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Abstract 

 

From 1980 – 2013, Wisconsin’s recolonized wolf population increased to > 800 wolves.  

Concurrently, Wisconsin Department of Natural Resources counted wolves, recovered wolf 

carcasses, and radio-collared and tracked individual wolves until death.  With these data, I 

studied survival of an endangered population during initial reestablishment to recovery and into 

the first years of harvest.   

I used mortality cause assessment from collared and not-collared wolf carcasses to study 

mortality cause patterns related to demographic, spatial, and temporal trends.  Collared wolf 

carcasses with illegal kill mortality cause were most often yearling wolves in 2003 – 2012 in 

winter in northeastern Wisconsin compared to other ages, periods, seasons, and regions.  

Collared wolf carcasses with natural mortality cause were prevalent in 1996 – 2002 in winter in 

northwestern Wisconsin.  Number of not-collared wolf carcasses (without legal kills) predicted 

wolf population size from 2003 – 2011.  Estimating correction constants between collared and 

not-collared datasets revealed roughly half of not-collared carcasses are unrecovered.    

I used radio-collar records of wolves to estimate wolf survival, and built a model based 

on endpoints.  I split the model into a hazard piece which modeled the approximate probability 

that a wolf reached its endpoint in some month, and a cause-specific endpoint probability.  I 

informed the baseline hazard with auxiliary data from population counts of wolves and 

partitioned some of the censoring into probable known death causes.  I estimated that 15% of 

dead wolves were misclassified as censored, and average annual survival rate was 74%.  On 

average, human-caused mortality >22% led to population decline.     
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I built an individual-based spatially-explicit model of wolf recolonization into Wisconsin 

and Michigan to understand population effects of different harvest scenarios.  Without harvest, 

Wisconsin’s wolf population stabilized at 1242 wolves after 50 years and breeding pairs 

persisted for a mean 1.8 years.  In general, harvest increased the proportion of pups in the 

population and decreased breeding pair tenure.  Targeted lethal control was more effective than 

harvest for reducing the number of wolves near known livestock depredation sites.  This model 

facilitates prediction of population patterns that are simultaneously dependent on complexities 

associated with life history and spatially structured mortality. 
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Chapter 1: Elucidating past cause of mortality patterns in a recently delisted, newly 

harvested wolf population 

Abstract 

A long-term record from recovered carcasses reflects changes in prominent mortality risks 

through time and can provide information on population dynamics.  We assessed mortality 

causes for radio-collared wolves (n = 208) and not-collared wolves (n = 668) found dead in 

Wisconsin from 1979 – 2012 to identify temporal variation and regional differences, correlations 

with population size, and correspondence between the collared and not-collared datasets.  We 

studied mortality cause differences relative to season, age and sex classes, regions of the state 

(i.e., wolf harvest zones), and period (1979 – 1995: recovery, 1996 – 2002: early growth, 2003 – 

2012: late growth).  Seasonally, the collared illegal kills and natural deaths were proportionally 

higher in winter (October – March) than summer (April – September), whereas vehicle strikes 

and legal kills were higher in summer than winter.  This seasonal disproportionality was more 

prominent in the late growth period relative to other periods.  Spatially, the highest proportions 

of illegally killed collared wolves occurred in eastern wolf harvest zones where wolves 

reestablished more slowly and in the central forest region where optimal habitat was isolated by 

agriculture.  Naturally killed collared wolves (e.g., mortality because of disease, intraspecific 

strife, or starvation) were proportionally highest in western wolf harvest zones where wolves 

established earlier and existed in higher densities.  Annual counts of all not-collared carcasses 

(excluding those with legal mortality cause) regressed against annual population size explained 

69% of the variation and predicted the last pre-harvest population size (winter 2011/2012) within 

its 95% credible interval.  Estimating correction constants between collared and not-collared 
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datasets revealed that roughly half of the not-collared carcasses on the landscape are not 

recovered, and most of the carcasses that are not recovered have natural and illegal mortality 

causes.   

Introduction 

Gray wolves (Canis lupus) in Michigan, Minnesota, and Wisconsin, USA of the Great 

Lakes region were delisted under the Federal Endangered Species Act and are now subject to 

legal harvest.  Prior to legal harvest, Great Lakes wolves had on average 15% less annual human-

caused mortality compared to Alaskan and Canadian wolf populations (Fuller et al. 2003).  

Presumably, the relatively low annual mortality rates in Great Lakes wolves compared to other 

wolf populations promoted recovery and led to the reestablishment of Wisconsin and Michigan 

wolf populations (Van Deelen 2009).  However, the mortality patterns in the reestablished 

Wisconsin wolf population have not been studied thoroughly.  The effect of the addition of 

harvest on other mortality in Wisconsin wolves is unknown, and analyses from North American 

wolf populations are inconclusive on whether harvest mortality is compensatory to other 

mortality (Adams et al. 2008, Creel and Rotella 2010, Murray et al. 2010, Gude et al. 2012).  

Further, harvest could have unknown impacts on Wisconsin’s wolves because of disruption in 

social and pack structure (Brainerd et al. 2008, Rutledge et al. 2010).  An understanding of past 

mortality patterns related to management approaches, age, season, and region could lend insight 

into the sound implementation of regulated legal harvest in Wisconsin.  For example, past 

mortality patterns could inform wolf harvest zone (WHZ) delineation such that regions with 

higher and lower mortality from various causes are in different WHZs with different harvest 

rates.  WHZs with lower rates of harvest could protect a core wolf population in areas with less 
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human-caused mortality.  Protecting a core wolf population could guard against harvest effects 

on wolf social structure, especially because these effects are yet unknown (Rutledge et al. 2010).  

We provide the first assessment of mortality patterns in the Wisconsin wolf population from > 

800 wolf carcasses recovered in 1979 – 2012.     

Wildlife carcass data can inform demographic parameters (Lovari et al. 2007, Sidorovich 

et al. 2007), index population mortality rates (Joly et al. 2009), and help estimate unobserved 

overall mortality (Huso 2011, Peron et al. 2013) when detection and reporting biases are 

estimated and incorporated.  Estimates of mammal carcass detection bias are uncommon and 

come primarily from road kill studies where carnivore carcasses are more detectable than other 

taxa (Santos et al. 2011).  Carnivores die from many causes other than by vehicle strikes, and it 

is more difficult to measure detection bias in these cases (Ciucci et al. 2007).  Failure to estimate 

and include these biases for an opportunistic sample of carcasses leads to potential problems if 

the sample is extrapolated to infer population-level processes (Ciucci et al. 2007).  However, if 

biases remain proportionally similar through time or if trends are known, a long-term record 

from recovered carcasses could reflect changes in prominent mortality risks through time.   

  Carcasses found in different ways can have different sources of bias.  Some carcasses 

are found when animals are live-captured, radio-collared, and tracked with radio-telemetry until 

they die.  These collared carcasses provide accurate estimates of mortality rates when the 

collared sample is representative of the population and any collared individuals that disappear do 

not actually die (Pollock et al. 1989, Tsai et al. 1999).  Another source of carcasses is the 

convenience sample of not-collared carcasses that are found on the landscape without the aid of 

radio-telemetry tracking.  The not-collared carcasses likely do not represent the population 
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mortality rates because of variable carcass detection rates from different mortality causes (Ciucci 

et al. 2007).  For example, road kill carcasses are more detectable than a carcass in remote areas 

with disease as its mortality cause.  Although collared carcasses may reflect more accurately the 

mortality causes in the population, not-collared carcasses also provide mortality cause 

information.  Not-collared carcasses are often many times more numerous than collared 

carcasses, and may be the only carcass data available.  With a sample of both collared and not-

collared carcasses, it is possible to understand the biases in the not-collared carcass dataset with 

respect to the collared carcass dataset.  For the first time, this allows researchers and managers to 

use a convenience sample of not-collared carcasses to understand population parameters.     

We studied mortality cause patterns in the Wisconsin wolf population for three decades 

prior to the regulated legal harvest.  Our purpose was to inform management decisions about the 

regulated legal harvest from these mortality patterns, and develop methodology to make carcass 

data useful for managers.  Our objectives were to: 1) assess how spatial, temporal, and 

demographic factors influence patterns of wolf mortality causes, 2) develop an index relating the 

number of not-collared carcasses to the population size, and 3) quantify the bias in the not-

collared carcass sample with respect to the collared carcass sample to estimate detection 

probability for wolf carcasses, by cause, and provide a correction from the more convenient not-

collared sample to the more accurate collared sample. 

Methods 

Dataset and mortality cause assignment 

We examined wolf carcasses in the six wolf harvest zones (WHZs) created for the 

Wisconsin wolf harvest in 2012 (Fig. 1).  The WHZs correspond roughly to habitat differences 
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that align with wolf population density differences.  Generally, Wisconsin has a gradient of more 

forest, smaller human population densities, and fewer roads in the north (WHZ 1 - 4) to more 

agriculture, higher human population densities, and more roads in the south (WHZ 6, Fig. 1).  

WHZ 5 is a forested area in central Wisconsin that supports 4 – 16 wolf packs annually (Thiel et 

al. 2009).   

We defined three periods of wolf recovery to align with population growth rates and 

management changes in Wisconsin: 1) The recovery period: In 1979 – 1995 the wolf population 

was federally listed as endangered and there was little population growth (Van Deelen 2009, 

Wydeven et al. 2009), 2) The early growth period: In 1996 – 2002 the wolf population 

approached the management goal of 350 wolves (Wydeven et al. 2009), and 3) The late growth 

period: In 2003 – 2012 Wisconsin used lethal methods to alleviate livestock depredation risk and 

human safety concerns during three separate delisting periods (Ruid et al. 2009).   

We used collared and not-collared wolf carcasses found in October 1979 – March 2012 

(Wydeven et al. 2009).  Agency biologist with the Wisconsin Department of Natural Resources 

(WDNR) normally did not radio-collar wolf pups unless they were > 4 months old and weighed 

> 14 kg (Wydeven et al. 2009).  Therefore, our sample of collared pups represents wolves from 4 

months to 1 year old.  We removed three collared female carcasses because we suspected (n = 1) 

or determined through genetic analysis (n = 2) that they were wolf-domestic dog hybrids.  Our 

second dataset was the convenience sample of 708 not-collared wolf carcasses.  We removed 32 

carcasses because we suspected (n = 22) or determined through genetic analysis (n = 10) that 

they were hybrids, and we removed six carcasses because of missing date or location 
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information.  Of the remaining 668 not-collared carcasses, there were 337 M, 278 F, and 53 for 

which sex was not determined (due to severe trauma, advanced decomposition, scavenging).     

Agency biologists (WDNR, USDA-Wildlife Services, U.S. Fish and Wildlife Service, 

and Tribal Conservation Departments) assigned a provisional mortality cause for each carcass 

from field investigation at the recovery site.  A necropsy was subsequently conducted for 539 

carcasses by USGS National Wildlife Health Center (primarily carcasses retrieved in 1979 – 

2007) or WDNR (primarily carcasses retrieved in 2004 – 2012).  Necropsy evaluations generally 

included whole body radiography (specifically to detect evidence of gunshot), inspection for 

gross pathology, and sometimes histopathology and specific laboratory analyses for evidence of 

viral, bacterial, parasitic, or toxin associated disease.  We used the necropsy results to confirm, 

improve, or establish the mortality cause.  When carcasses were not necropsied, we used the 

mortality cause recorded in the field (by a wildlife biologist, warden, or manager).  If there was 

doubt about the mortality cause and no follow-up necropsy, we assigned an unknown mortality 

cause.  We determined mortality cause from the necropsy report rather than the field 

investigation if there was disagreement.   

We developed a standard procedure and followed a set of definitions to assign mortality 

cause to carcasses (Table 1).  We used natural-cause categories of: 1) infectious disease, 2) 

intraspecific strife, or 3) other natural causes.  The human-associated mortality causes were: 4) 

illegal kill, 5) legal kill, 6) vehicle strike, or 7) other human causes.  We used a final category of 

unknown: 8) undetermined or unclear, and 9) trauma from an unknown source.  We used the 

most significant factor that led to death as the mortality cause in situations where a wolf was 

compromised severely by one cause leading to death by another cause.  Examples were a wolf 
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that died of starvation and hypothermia because of mange (mortality cause = disease), a wolf that 

was hit by a car but close to death from mange (mortality cause = disease), and a wolf that was 

euthanized because of severe injury from a vehicle strike (mortality cause = vehicle).  In order to 

be classified an illegal kill in this study, the carcass had to have clear evidence of a bullet wound, 

trap-related injury, or poisoning leading to death.  We did not include carcasses with evidence of 

being shot sometime in the past as ‘illegal kills’. 

Patterns in mortality causes 

We used a baseline category logit model in a Bayesian framework to relate the observed 

mortality causes to spatial, temporal, and demographic variables.  The mortality cause for carcass

r , rX , was one of K  causes where K  was the total number of causes: {1,2,..., }rX K .  

Carcasses were indexed by r where 1,2,...,r R  and R  was the total number of carcasses.  We 

modeled rX  as a categorical random variable:  

1 2~ ( , ,..., )r r r rKX categorical p p p    

The categorical distribution had parameters rkp  which were the probabilities of carcass r  having 

mortality cause k and
1

1
K

rk

k

p


 .  Through the logit link, the rkp  probabilities were related to a 

vector of rz  linear predictors and a vector of kβ  unknown regression coefficients (log odds 

ratios): 

1

k r

j r

rk K

j

e
p

e






β z

β z
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We defined mortality cause categories as: 1k  ) natural (i.e., disease, intraspecific strife, and 

other natural causes), 2k  ) illegal kill, 3k  ) legal kill, 4k  ) vehicle strike, and 5k  ) 

unknown and other (including unknown, other human-caused mortality, other trauma; Table 1).  

We set natural mortality as the baseline category and the regression coefficients for, 1β , were 

constrained to 0.  We gave all other regression coefficients normal priors with mean 0 and 

variance 10,000: 2~ (0,100 )k normalβ  where 2,3,...,k K .   

 Our predictor variables, rz , were age and sex categories (adult male, adult female, 

yearling, pups), seasons, periods (recovery: 1979 – 1995, early growth: 1996 – 2002, late 

growth: 2003 – 2012), and WHZ.  We defined summer and winter seasons.  Summer included all 

carcasses from 1 April to 30 September and covered denning, birth and rearing of pups, and early 

movement of the nearly grown pups with the pack (Mech and Boitani 2003).  Winter included all 

carcasses from 1 October to 31 March and covered the main dispersal period, nomadic 

movement of packs, and mating season (Mech and Boitani 2003).  We had a total of 15 variables 

in 4 categories.  We constrained the model so that the intercept corresponded to adult male 

wolves in late growth period in summer in WHZ 1.  Therefore, the length of vector rz  was 11 

(15 predictor variables minus 4 categories) plus 1 for the intercept.  

We ran one model where the collared carcasses were the response variable, and one 

model where the not-collared carcasses were the response variable.  We did not run a model with 

collared carcasses and not-collared carcasses together, because we expected that there were 

substantial differences in these datasets.  We removed observations in WHZ 6 from the collared 

carcass analysis (n = 5) and observations in WHZ 4 from the not-collared carcass analysis (n = 

10) because of lack of observations in these WHZs.  We reported the log-odds of the mean 



9 

 

posterior parameter estimates and standard errors for each mortality cause category related to the 

baseline natural mortality category.    

For each model, we ran three Markov chain Monte Carlo (MCMC) chains for 10,000 

iterations after discarding the first 10,000 iterations as burn-in in program JAGS (Plummer 2003) 

through program R (R Developement Core Team 2005) and package ‘rjags’ (Plummer 2011).  

We assessed convergence using both univariate potential scale reduction factors ( R̂ ; (Gelman 

and Rubin 1992)), and the multiple potential scale reduction factor ( ˆ aR , where a  is the number 

of parameters; (Brooks and Gelman 1998)).  We judged convergence to be satisfactory when 

upper 97.5% confidence limits of all R̂ s and ˆ aR  were < 1.1.  We performed external validation 

and posterior predictive checking to ensure the inferences from the model made sense and the 

model was consistent with the data (Appendix A). 

Recovered carcass counts as a population size index 

To understand whether the number of recovered carcasses could index population size, 

we used simple linear regression to relate the mean population count to different measures of the 

number of not-collared carcasses found each year.  The response variable was the mean 

population count, iN  , where 1,2,...,i n  years and n was the total number of years.  The WDNR 

reports annual winter counts as ranges (lower bound is minimum count), and we used the 

midpoint of the range in each year as our count, iN  (Wydeven et al. 2009).  We modeled iN  as 

normally distributed around some annual mean, i , and variance,
2 :   2~ ( , )i iN normal   .  

The mean i  was linearly related to a predictor, iz , unknown intercept,  , and regression 

coefficient, β: i iz    .  The variance 
2  was calculated from the difference in the high and 
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low count for each year.  We assumed that the range in counts each year represented four 

standard deviations and used the mean of the standard deviations across the years as  (range 

rule, [Triola 2010]).  We gave the intercept   and coefficient β normal priors centered on mean 

0 and variance 10,000, 
2~ (0,100 )normal and

2~ (0,100 )normal .   

 The predictors, iz , were the number of carcasses found in the previous calendar year (e.g., 

winter count in 2003/2004 and number of not-collared carcasses in January – December 2003).  

We used data from January 2003 – December 2010 to fit the model and left out the January – 

December 2011 carcass data and 2011/2012 winter count for validation.  We expected the most 

recent years of data to represent the wolf population of the future and our interest was in using 

not-collared carcass counts in the future to predict population size.  We used five subsets of 

annual not-collared carcass counts in five linear regressions.  The five configurations of iz  were: 

1) all carcasses, 2) illegally killed, 3) naturally killed, 4) vehicle strikes, and 5) all not-collared 

carcasses minus legally killed (‘no legal’).  We expected the number of legally killed carcasses to 

potentially confound the index of not-collared carcasses to population size because the number 

of legally killed carcasses varied from 0 – 42 wolves and was determined by management status.   

 We assumed the best index had the highest coefficient of determination              

( 2 1 residuals totalR SS SS  ) and made the best posterior prediction of the mean population count in 

2011/2012 (N2011/2012 = 848 [range: 815 – 880]).  The best prediction was the posterior that 

overlapped the 2011/2012 population count and had the smallest variance.  To understand how 

the index performed in 2012/2013 after the addition of harvest mortality, we predicted the 

2012/2013 winter count using the best model and the number of not-collared carcasses found in 

January – December 2012.  The observed 2012/2013 winter count was 809 – 834 wolves.  We 
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performed all analyses in program JAGS through the library ‘rjags’ in program R and followed 

the Bayesian modeling methods outlined previously. 

Correction between collared and not-collared carcass datasets 

We used a state space model in a Bayesian framework to relate the observed collared and 

not-collared adult carcass counts in WHZs 1 – 5 through four unknown variables: 1) year-

specific seasonal mortality rate for collared wolves, 
ijc , 2) cause-specific allocation of seasonal 

mortality rate for collared wolves, 
ijkm  , 3) yearly cause-specific number of wolves that died 

each season,
ijkn , and 4) cause-specific seasonal detection probability of not-collared carcasses, 

jkd .  We had models for the observed data, models for the unobserved process, and models for 

the parameters in the form of prior distributions.  Years were indexed by i where ni ,...,2,1  and 

n was the total number of years.  Seasons were indexed by j where 2,1j  for summer and 

winter seasons, as defined previously, and mortality causes were indexed by k where 

Kk ,...,2,1  and K was the total number of causes.   

Our data models were for each of our three observed variables.  First, we took the number 

of collared adult carcasses that were found dead in year i, season j, from cause k, ijkR , to be 

multinomially-distributed with  ijkm  proportion of all carcasses in ij that were assigned to k cause 

and ijR  total collared carcasses:  

),,...,,(~ 21 ijijKijijijk RmmmlmultinomiaR .    
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Second, we took the total collared adult carcass count in year i, season j, ijR , as a binomial 

distribution with 
ijc  year-specific seasonal collared adult mortality rate and ijE  collared wolves: 

~ ( , )ij ij ijR binomial c E .   

We let ijE  be the number of collared wolves that were actively monitored at the start of period ij.  

Third, we took the number of not-collared carcasses that were found dead in year i, season j, 

from cause k, ijkV , to be binomially-distributed with ijkd  probability that the carcasses were 

detected in the not-collared sample and ijkn  total carcasses:   

~ ( , )ijk ijk ijkV binomial d n . 

Here 
ijkn  was an unobserved latent variable.  We used all adult wolves found dead in Wisconsin 

from April 2003 to March 2012, and K = 5 mortality causes, including: 1) natural, 2) illegal kill, 

3) legal kill, 4) vehicle strike, and 5) unknown.  These categories were defined as in the mortality 

cause patterns section, above.   

We modeled ijkd as distributed normally around mean 
jkd and variance 2 :  

2~ ( , )ijk jkd Normal d   . 

We modeled the number of wolves that died in year i season j from cause k, 
ijkn , as a latent 

variable with a binomial distribution with probability parameter, *ij ijkc m , and population size 

ijN :  

~ ( * , )ijk ij ijk ijn binomial c m N   

We restricted ijkn to be an integer at least as big as the observed number of carcasses, ijk ijkR V .  

The probability parameter, *ij ijkc m , was the cause-specific collared adult mortality probability 
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with 
ijc  as the total collared adult mortality probability (non-cause-specific) and 

ijkm  as the 

proportion of total collared adult mortality due to cause k.  The population size,
ijN , was drawn 

from a Poisson distribution with its mean and variance parameter equal to the population count 

(dataset explained above) in year i season j, 
ijNobs : 

~ ( )ij ijN Poisson Nobs   

We calculated the population count in the winter of each year i, 2iNobs , as the mean population 

count in year i (e.g., winter population count in 2003/2004 = 373 – 410; 
1,2 391Nobs  ).  We 

calculated the population count in the summer of each year i, 1iNobs , as the mean of the winter 

population count in the previous winter plus the mean of the pup count in the following winter 

(e.g., pup count in 2004/2005 = 118 – 192; 
2,1 391 155 546Nobs    ).  The number of pups in 

the winter was not estimated in 2009 – 2012.  To calculate the observed population size in these 

last three summer seasons, we used the average proportion of pups in the population in the 

previous summers (0.38) to calculate the mean expected number of pups.    

We assigned the ijkm s  Dirichlet priors centered on a uniform multinomial distribution: 

~ ( ), 1ijk ijk ijkm Dirichlet K   , and we assigned ijkc  beta priors: ~ (1,1)ijkc beta .  The jkd  priors 

were assigned beta priors for k = 1, 2, 3, 4, 5: ~ (1,1)jkd beta , and the prior on   to estimate a 

year effect of detection probability was a uniform: ~ (0,100)uniform .  We performed all 

analyses in program JAGS through library ‘rjags’ in program R and followed the Bayesian 

modeling methods outlined previously.  We performed an extensive model checking procedure 
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to ensure the predictions from the model made sense and that the model was consistent with the 

data (Appendix B). 

Results 

Dataset and mortality cause assignment 

 Most deaths in the collared wolves dataset were due to illegal killing (33%) and disease 

(18%), while most deaths in the not-collared wolves dataset were due to vehicle strikes (39%), 

legal kills (30%), and illegal kills (18%; Table 2).  Deaths due to human causes were at least 

50% more common in the not-collared dataset (88%) compared to the collared dataset (57%; 

Table 2).  The collared wolves dataset had greater proportion of adults (79% vs. 55%) and fewer 

yearlings (11% vs. 20%) and pups (10% vs. 25%) compared to the not-collared dataset.      

 Necropsies were performed on 70% of the collared carcasses and 62% of the not-collared 

carcasses.  The proportion of carcasses that were necropsied varied by mortality cause and 

period.  Over 80% of the natural mortalities were necropsied, compared to 51% and 63% of the 

legal and vehicle mortalities, respectively.  Of the carcasses that were illegally killed, 70% of 

them were necropsied.  By period in wolf recovery, 60%, 85%, and 56% of the carcasses were 

necropsied in the recovery, early growth, and late growth periods, respectively. 

 Of the 443 cases where field and necropsy diagnoses of mortality cause were available, 

there were 52 cases where the mortality cause suspected in the field was different than the cause 

determined from necropsy.  In most of these cases (65%), an unknown mortality cause from the 

field was updated with a cause determined from necropsy.  In five cases, the mortality cause 

suspected in the field was not confirmed by necropsy and the cause from necropsy was an 

unknown mortality cause.  In three cases, a mortality cause of vehicle strike from the field was 
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changed to ‘illegal kill’ (two cases) or ‘intraspecific strife’ (one case) after necropsy.  In three 

cases, a mortality cause of ‘illegal kill’ from the field was changed to ‘vehicle strike’ after 

necropsy.  The remaining seven cases were when the field mortality cause diagnosis was ‘other 

natural’ and the necropsy determined ‘disease’ or vice versa.  

 Most carcasses in the collared and not-collared samples were found in the late recovery 

period (77%).  There was discernible annual variability in the proportion of carcasses with each 

mortality cause, especially in the collared carcass dataset (Fig. 2).  In particular, the proportion of 

collared carcasses that was illegally killed ranged from 6 – 82% per year (Fig. 2).  We suspect 

that the not-collared carcass dataset was not as variable because we were consistently unable to 

detect some mortality causes (e.g., natural mortality) without the aid of telemetry.  The not-

collared carcasses had high proportions of mortality causes from legal kills and vehicle strikes, 

and these causes had the most annual variation in the not-collared carcass dataset (Fig. 2).   

Patterns in mortality causes 

We obtained satisfactory convergence criteria for both models.  All R̂ and ˆ aR values 

were < 1.054.  The results of the external validation and model checking demonstrated 

reasonable predictions from the model and that the model was consistent with the data 

(Appendix A).  We focused our interpretation on the results of the collared carcass analysis in 

early and late recovery.  The not-collared carcass analysis demonstrated some different patterns 

compared to the collared carcass analysis because of the detection probability biases of not-

collared carcasses (Fig. 2).  The model fitted values can be used to derive odds ratios for any 

baseline set of covariates (Appendix C, Tables C.1 and C.2).    
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Collared yearling carcasses had more than five times the odds of an illegal versus natural 

mortality compared to adults (Appendix C, Table C.1).  The mortality cause probability 

estimates for yearling carcasses were higher for illegal killing and lower for legal killing 

compared to the other age and sex classes.  Otherwise, the adult male, adult female, and pup 

patterns in mortality causes were similar.  In winter compared to summer, collared carcasses 

were on average 7 – 28 times more likely to have a natural or illegal mortality compared to a 

vehicle, unknown, or legal mortality (Fig. 3).  Vehicle and legal mortalities were more common 

in summer than in the winter (Fig. 3).  In the early growth period compared to the late growth 

period, collared carcasses were more than three times as likely to have a natural mortality instead 

of another cause (Appendix C, Table C.1).  In the late growth period carcasses had lower natural 

mortality and higher illegal killing probabilities compared to the early growth period (Fig. 3).  

Collared carcasses in WHZ 2 and 4 were five times as likely to have an illegal versus 

natural mortality in the late growth period compared to carcasses in WHZ 1 (Fig. 3).  WHZs 1 

and 3 had similar mortality cause probability estimates for different covariate combinations.  

Also, WHZs 2, 4, and 5 had similar mortality cause probability estimates with the exception of 

WHZ 5 having higher predicted probability of natural mortality and lower probability of illegal 

mortality in the early and late growth periods compared to WHZs 2 and 4 (Fig. 3).   

Recovered carcass counts as a population size index 

We obtained satisfactory convergence criteria for all models with all R̂  and ˆ aR values < 

1.031.  The best index to population size based on highest R
2
 was the model with the predictor of 

all not-collared carcasses except legally killed not-collared carcasses (Table 3).  The ‘no legal’ 

model’s 95% prediction interval for the 2011/2012 mean population count overlapped the 



17 

 

observed 2011/2012 mean population count (Fig. 4).  All other models explained a smaller 

proportion of the variation and had 95% prediction intervals that did not overlap the observed 

2011/2012 mean population count (Table 3).  The prediction of the 2012/2013 winter wolf 

population count based on observing 42 not-collared ‘no legal’ carcasses in 2012 was 657 (649 – 

664), which underestimated the observed 2012/2013 count of 809 – 834 wolves by a third.     

Correction between collared and not-collared carcass datasets 

Satisfactory convergence criteria were obtained for both models with all R̂  and ˆ aR

values < 1.011.  The results of the external validation and model checking demonstrated that the 

inferences from the model made sense and the model was consistent with the data (Appendix B).   

 The average annual mortality rate for collared wolves was 0.09 (standard deviation [SD] 

= 0.01).  On average the mortality rate was two-times higher in winter (Mean = 0.06, SD = 0.01) 

than summer (Mean = 0.03, SD = 0.01; Appendix D, Table D.1).  In winter, 74% of collared 

wolf mortality was due to natural causes or illegal killing with ten and five times higher natural 

and illegal mortality, respectively, in winter than summer.  Legal mortality was five times higher 

in summer than winter (Fig. 5).   

 The estimated population size was always lower than the observed population size, but 

the 95% credible interval for the estimated population sizes in every season and year overlapped 

the observed population size (Appendix D, Table D.2).  Population size estimates that were 

biased low led to low estimates of the number of carcasses on the landscape and high estimates 

for detection probability of those carcasses. Summed across years, the estimated median number 

of carcasses on the landscape was 1 – 3 times (1 – 19 times, upper bound of 95% credible 

interval) the number that were observed and this varied by season and mortality cause (Table 4).        
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The year effect 
2  for detection probability of not-collared carcasses was 0.15 (SD = 

0.04).  The mean probability of detecting a wolf carcass was higher and more variable in summer 

(Mean = 0.56, SD = 0.05) than in winter (Mean = 0.45, SD = 0.04).  Additionally, there were 

differences in detectability by mortality cause (Fig. 6; Appendix D, Table D.1).  The highest 

probability of carcass detection was for legal kills (69 – 78%) and vehicle strikes (73 – 76%).  

On average, we detected only 39 – 53% of the illegal kill carcasses and 22 – 38% of the 

carcasses with a natural mortality cause (Fig. 6; Appendix D, Table D.1). 

Discussion 

In three decades, the Wisconsin wolf population recovered from a handful of endangered 

wolves to a legally harvested population.  We detected spatial and temporal patterns in mortality 

causes from recovered wolf carcasses that lend insight into wolf population recovery.  Wolf 

recovery was aided by high population growth rates, especially since mid-1990s (Van Deelen 

2009).  We found that carcasses in 1996 – 2002 compared to other periods were less likely to 

have a human mortality cause, perhaps promoting population recovery.  Since then, wolf 

carcasses were more likely to have an illegal mortality cause, and especially in the northeastern 

portion of Wisconsin where there is lower wolf density.  Perhaps the best way to mitigate the 

unknown effects of harvest on wolf social structure is to designate WHZs with lower harvest 

rates in areas where there is lower human-caused mortality, thereby protecting a core wolf 

population.  Our analysis is the first to provide direction on which existing WHZs have the 

highest rates of human mortality causes for wolves.          

In 2003 – 2012, there were proportionally more collared carcasses that had a legal 

mortality cause in summer and an illegal mortality cause in winter compared to other periods.  
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These increases led to a decrease in the natural mortality category rather than another mortality 

cause, suggesting that an increase in human-caused mortality may compensate for some of the 

natural mortality (Adams et al. 2008, Creel and Rotella 2010, Murray et al. 2010).  In 2012, 

Wisconsin established its first recreational wolf hunting season and no wolves were found dead 

from natural causes for the first time since 1995 (Wisconsin Department of Natural Resources 

2013).  However, the lack of natural caused mortality detection may be partially due to reduced 

reporting of dead wolves with the federal delisting and start of the hunting season. There were 

some indications that not all dead wolves were being reported (A. Wydeven pers. comm.). It is 

too early to fully understand how harvest will compensate for other mortality causes, especially 

because we did not assess other factors like variable recruitment in this study (Gude et al. 2012).  

Our baseline analysis of three decades of pre-harvest mortality causes will be useful for 

understanding the potential for compensation between natural and human-caused mortality 

sources after more hunting seasons.    

Yearling collared wolves were more likely to be illegally killed than killed from another 

mortality cause regardless of WHZ, recovery period, or season.  The effect of illegal killing on 

population growth may be reduced if yearlings are easier targets for illegal killing than adult and 

breeding wolves (Brainerd et al. 2008).  A high rate of illegal killing on young, non-reproductive 

wolves might be a contributing factor in the wolf population maintaining high annual growth 

rates at an average of 12% per year since 2000 concurrent with illegal killing as the most 

common source of mortality (Van Deelen 2009, Wydeven et al. 2009).  Of course, low mortality 

and high recruitment are the primary determinates to population growth, despite the proportion 

of some age class that died from a certain mortality cause (Gotelli 1995). Based on tooth 
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cementum analysis, the age structure of the 2012 Wisconsin wolf harvest was 75% pups and 

yearlings.  Harvest, like illegal killing, may also target young, non-reproductive wolves thereby 

reducing potentially some of the unknown social structure and population-level effects of 

hunting on a wolf population (Rutledge et al. 2010).         

Mortality patterns differed by WHZ.  There was more illegal killing of collared wolves in 

the eastern WHZs (2 and 4) where wolf density was lower.  These areas are preferred wolf 

habitat (Mladenoff et al. 2009), but the population has increased slowly, suggesting that a higher 

rate of illegal killing inhibited growth.  To the west, WHZs 1 and 3 had high proportions of 

natural mortality.  Wolves have been established in these WHZs longest and wolf densities are 

highest, and density-dependent mechanisms may be driving natural mortality.  WHZs 3, 4, and 5 

had the highest proportions of vehicle strikes, presumably because of more agricultural land, 

more human activity, and higher road density.  This suggests that the island wolf habitat in the 

central forest is nonetheless vulnerable to human-caused mortality.  However, pack territory 

sizes are smaller, wolf density is higher, and pup production is higher compared to the northern 

forest wolf population in WHZs 1 – 4 (J. Wiedenhoeft pers. comm.).  The different distribution 

of mortality causes in WHZ 5 compared to the other WHZs does not appear to coincide with any 

reduction in overall numbers or productivity for wolves in WHZ 5.      

Mortality patterns differed by season.  Illegal kills and deaths from natural causes 

(intraspecific strife and disease) were common in the winter (October – March), coincident with 

Wisconsin’s hunting season for white-tailed deer and the time when wolf packs are highly 

mobile (Mech and Boitani 2003).  In winter, interpack relations may be contentious because 

mobility increases the potential for territorial disputes caused by incursions into the territories of 
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neighboring packs (Mech 1977).  Also, low ambient temperatures in winter could exacerbate the 

effects of mange: hair loss resulting in thermoregulatory problems, and starvation in severe cases 

(Kreeger 2003).  Of illegal kills of collared wolves, 43% occurred in November; the presence of 

> 600,000 hunters on the landscape during deer gun hunting season in November is clearly a 

significant factor in the illegal killing of wolves.  In summer (April – September), the peak in 

legal control mortalities corresponds to peak cattle calving season.  Cattle are the most common 

target for livestock depredation by wolves in Wisconsin, and the documented cattle depredations 

motivate most legal control efforts for wolves (Ruid et al. 2009).   

  The number of not-collared carcasses (without legal kill mortality cause) was a good 

predictor of annual population size through 2011, but the addition of the recreational harvest in 

2012 may affect this index.  The underestimate of the 2012 population size from our index is 

likely related to the presumed lack of reporting of dead wolves in 2012 (see above).  Our index 

may be inaccurate for estimating population size when given a novel mortality cause, in this case 

hunting and landowner permits to shoot wolves.  However, our success in developing an index 

for the time period pre-harvest is encouraging.  Concerted efforts to locate and report road kills 

and other wolves found dead in the field appears to provide an inexpensive means for estimating 

the wolf population.  Some adjustments in the index may be needed in the future to account for 

depredation controls and public harvest. 

Managers would like to rely on data from a not-collared carcass sample to estimate 

population parameters because it is a more convenient, less expensive, and a larger sample 

compared to collared carcasses.  Not-collared carcasses are difficult to detect and are subject to 

biases linked to mortality cause and season (Jennelle et al. 2007).  Therefore, the best 
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opportunity to understand the underlying mortality cause patterns in the population is through 

estimating detection probabilities for not-collared carcasses that account for these biases. Our 

correction factor analysis allowed us to quantify the cause-specific bias in the not-collared 

sample compared to the collared sample, which renders these data more useful.  Vehicle strikes 

and legal kill mortality causes were the most detectable on the landscape.  Estimates of not-

collared carcass detections suggest that managers miss half of the not-collared carcasses, and our 

lowest detection was for not-collared carcasses with a natural mortality cause.  We recommend 

that correction between collared and not-collared carcass datasets is reexamined after a few years 

of legal harvest because this relationship might change.    

Quantifying the fates of collared individuals is, by now, a routine technique for inferring 

variation in mortality patterns in a population (Heisey and Fuller 1985). Using this technique, 

researchers assume that the fates of collared individuals represent proportional mortality causes, 

but collared data can also be vulnerable to potential biases (Heisey and Fuller 1985, Jacques et 

al. 2011, Liberg et al. 2012).  The collared carcass sample was most representative of mortality 

patterns of adult wolves living in the heavily forested portions of northern and central Wisconsin 

where most wolves were captured and collared (WHZs 1 – 5).  While these areas include the 

majority of Wisconsin’s wolf range, those wolves that moved out of these areas into WHZ 6 

were probably not represented as well by the collared sample (Mladenoff et al. 2009), and appear 

to be exposed to higher rates of vehicle strikes and illegal kill.  Further, the collared carcass 

sample represents only those wolves that were tracked until death.  Some collared wolves are 

lost-to-follow-up and therefore not included in the collared carcass sample.  Our collared sample 

is unbiased when the loss-to-follow-up process is independent of the death process (Klein and 
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Moeschberger 2003).  However, if some wolves are actually killed and their collars are destroyed 

when they are lost-to-follow-up, then we may have bias in our sample.  Our collared carcass 

sample may underestimate the proportion of illegal killing in the population (Liberg et al. 2012).   

The majority of carcasses were necropsied, and without necropsy we would have 

misidentified mortality cause for 10% of the carcasses.  When there was a discrepancy between a 

field and necropsy mortality cause assessment, the necropsy often provided clarity leading to a 

known mortality cause.  Assigning each wolf a single mortality cause simplified a sometimes 

complicated pattern of health problems identified at necropsy.  We assigned one discrete cause 

(e.g., vehicle) despite other factors (e.g., mange or healed gunshot trauma) that may have 

contributed to the death.  Though this simplification may mask important details of disease 

patterns in a wolf population, it was necessary for the temporal, spatial, and population 

prediction analyses in this study.  As long as a system of rules and definitions is used when 

making mortality cause assessments, the simplified set of mortality cause categories used for 

these analyses is appropriate (Heisey and Fuller 1985).  Necropsy is invaluable for obtaining 

accurate mortality causes from carcasses, and we recommend continuing to necropsy recovered 

wolf carcasses. 

The reduction of protection under state and federal endangered species laws for the 

recovered wolf population in Wisconsin has led to rapid and recent initiation of a recreational 

hunting season.  Hunting as an additional cause of mortality will change the distribution of 

mortality cause, including by season and location, and it appears that some of this will be 

through compensation (Murray et al. 2010).  Our study provides important baseline data that can 

be compared to similar cause-specific mortality analysis for a hunted wolf population.  The 
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designation of hunting zones is an important consideration because hunting has the potential to 

greatly disrupt the social structure of wolf packs with subsequent effects on population growth 

(Brainerd et al. 2008, Rutledge et al. 2010).  The long term effects of disrupted pack structure is 

yet unknown, but decisions to focus harvest of wolves in areas where they are already 

experiencing high rates of human-caused mortality may protect a core population that is socially 

intact and stable. 
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Table 1. Definitions and examples of nine mortality causes for wolves found dead in Wisconsin, 

USA from 1979 – 2012. 

Mortality cause Category Definition Examples 

Disease Natural Wolves that died from an 

infectious disease  

Sarcoptic mange; canine 

distemper; bacterial infection; 

blastomycosis, pneumonia; 

canine parvovirus 

Illegal  Human Wolves that were killed illegally 

by humans  

Shooting; trapping (not for 

research); poisoning; clubbing 

Intraspecific 

strife 

Natural Wolves that were killed by other 

wolves 

 

Legal Human Wolves that were killed legally 

by humans 

Depredation control  (attack of 

livestock; threat to humans or 

pets); died during capture for 

research/monitoring 

Other human 

causes 

Human Wolves that were killed by other 

human causes or a human cause 

that could not be identified.   

Snowmobile or train collision; 

unintentionally entrapped by 

unnatural structures (pail, bear 

bait log); artillery fire on 

military base 

Other natural 

causes 

Natural Wolves killed by other natural 

causes or a natural cause that 

could not be identified. 

Starvation; drowning; stuck in 

crotch of tree 

Other trauma Unknown Wolves that died from trauma.  

The trauma could not be 

ascribed to a particular source, 

or even to a human or natural 

cause category. 

 

Unknown 

causes 

Unknown Wolves that were found dead 

without a clear cause of death. 

Severe decomposition or 

scavenging of a carcass that 

prevented mortality cause 

determination; more than one 

suspected mortality cause  

Vehicle Human Wolves that were killed by a car, 

truck, or motorcycle on the road 
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Table 2. Mortality cause for collared and not-collared wolf carcasses found in Wisconsin, USA, 

from 1 October 1979 – 31 March 2012.   

   Human-caused Natural Unknown 

Dataset Sex N Illegal Legal Veh
b
 Other 

Human 

Disease Intra- 

Specific 

Other 

Natural 

Other 

Trauma 

Unk
c
 

Collared F 112 44 15 10 2 19 11 2 2 7 

 M 96 25 11 11 1 18 7 1 3 19 

 All 208 69 26 21 3 37 18 3 5 26 

Not-

collared 

F 278 54 91 101 5 8 3 0 1 15 

M 337 62 106 133 3 14 5 1 0 13 

All 668
a
 123 198 258 8 23 10 2 1 45 

  
a 
Total includes some carcasses where sex was not determined. 

  
b 

Veh = vehicle 

  
c 
Unk = unknown 

 

Table 3. A comparison of the mean parameter estimates (and standard deviation), mean 

coefficients of determination (and standard deviation), and mean 2011/2012 wolf population size 

prediction (and 95% prediction interval) of linear regressions comparing some count of the 

number of not-collared wolf carcasses found each year and the minimum population count for 

wolves in Wisconsin, USA in 2003 – 2010.    

Predictor α β R
2
 Prediction 

a
 

All  239.7 (15.2) 5.7 (0.3) 0.203 (0.006) 562 (544 – 581) 

Illegal 303.6 (10.8) 28.0 (1.1) 0.408 (0.011) 696 (675 – 716) 

Natural 608.0 (11.9) -16.2 (5.5) 0.034 (0.046) 592 (572 – 612) 

Vehicle 171.3 (12.5) 20.3 (0.6) 0.550 (0.004) 883 (858 – 909) 

No legal 109.4 (12.9) 13.0 (0.4) 0.692 (0.002) 826 (803 - 849) 
a  

The observed 2011/2012 population count was 848 wolves (range: 815 – 880) 

 

 

Table 4. The total observed and estimated median number of wolf carcasses (and 95% credible 

intervals [CI]) found in summer and winter of 2003 – 2012 in Wisconsin, USA from five 

mortality causes.   

Mortality 

cause 

summer winter 

observed median 95% CI observed median 95% CI 

Natural 5 10 5 - 41 31 86 49 - 149 

Illegal 20 26 20 - 52 57 113 64 - 203 

Legal 94 96 94 - 161 17 18 17 - 23 

Vehicle 38 39 38 - 45 33 34 33 - 40 

Unknown 27 63 32 - 142 10 44 18 - 96 
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Figure 1. Land cover in Wisconsin, USA, from WISCLAND (Wisconsin Department of Natural 

Resources 1998), with the six wolf harvest zones created for Wisconsin wolf harvest in 2012.   



31 

 

 

 

 

Figure 2.  Boxplots of annual proportion of mortality from five causes in collared wolf carcasses 

and not-collared wolf carcasses in Wisconsin, USA from 2003 – 2012 (unk. = unknown 

mortality sources).   
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Figure 3.  Predicted probabilities for collared adult male carcasses found in Wisconsin, USA in 

early growth (1996 – 2002) or late growth (2003 – 2012) periods during summer (April – 

September) or winter (October – March) from five mortality causes. 
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Figure 4. Linear prediction and 95% prediction interval (gray polygon) fit to 2003 – 2010 

Wisconsin, USA wolf population counts versus the number of not-collared wolf carcasses found, 

not including the legal mortalities.  The 2011/2012 winter count was left out of the model so that 

it could be predicted.   
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Figure 5. Cause-specific probability of mortality from natural (nat), illegal (ill), legal (leg), 

vehicle (veh), and unknown (unk) causes for adult collared wolves in wolf harvest zone 1 – 5 of 

Wisconsin, USA in summer (solid lines) and winter (dashed lines) from 2003 – 2012. 
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Figure 6. Cause-specific detection probability from natural (nat), illegal (ill), legal (leg), vehicle 

(veh), and unknown (unk) mortality causes for adult wolf carcasses in wolf harvest zones 1 – 5 

of Wisconsin, USA in summer (solid lines) and winter (dashed lines) from 2003 – 2012.   
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Appendix A. External validation and posterior predictive checking for models of mortality cause 

patterns 

Methods 

We implemented an external validation and model checking for each of our models.  The 

validation data that we left out of the model were the 8 collared carcasses and 73 not-collared 

carcasses found in Wisconsin from 1 April – 30 September 2012 before the first harvest.   For 

each covariate combination represented in the validation data (e.g., adult males in WHZ 1) that 

had N carcasses, where N > 5, we predicted the number of carcasses had each mortality cause k 

from the multinomial posterior distribution:  

1 2 3 4 5. ~ ( , , , , , )kX predict multinomial p p p p p N     

We concluded that if the 50% prediction intervals of . kX predict  contained the validation data at 

least half the time than our model provided reasonable inferences.     

For the posterior predictive check, we drew simulated values from the multinomial 

posterior distributions and observed whether the simulated values matched our observed data.  

For each covariate combination of the observed data with > 5 carcasses in the collared dataset 

and > 10 carcasses in the not-collared dataset, we created a histogram of the number of each of 5 

mortality causes that were predicted under 1000 draws of the multinomial posterior distribution 

and plotted 50% and 95% prediction intervals.  We compared this distribution to the observed 

number of carcasses in each mortality cause category.  We assumed that the model was 

consistent with the data if the observed number of carcasses in each mortality cause category 

were within the middle 50% of the posterior predictive distributions at least half the time.   

Results  
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In the collared carcass model, the external validation was based on 6 adult female 

carcasses found dead in WHZ 1 (Table A.1).  The number of carcasses in each mortality cause 

from the collared carcass validation data was within the 50% prediction interval in all cases (Fig. 

A.1).  In the not-collared carcass model, the external validation was based on adult males (

12,9 31  WHZWHZ NN ), adult females ( 81 WHZN ), yearlings ( 12,6 31  WHZWHZ NN ), and pups 

( 91 WHZN ) in WHZs 1 and 3 (Table A.1).  The validation data was within the 50% and 95% 

prediction intervals 60% and 87% of the time, respectively (Fig. A.2).  In general for the not-

collared carcass model, the validation data was under-predicted for legal mortality cause and 

over-predicted for vehicle mortality cause (Fig. A.2).  The not-collared carcass validation data 

had 55 out of 56 carcasses with a legal mortality cause which represented a much higher rate of 

legal killing than was previously seen.  Even so, both models predicted the validation data within 

the 50% prediction interval well over half the time.  Therefore, we concluded that the inferences 

from the model made sense.       

The posterior predictive check was based on 10 covariate combinations in the collared 

carcass dataset (Table A.1).  From the predicted distribution for each set of covariates, the 

observed collared carcass data was within the 50% and 95% prediction intervals 76% and 98% 

of the time, respectively (Figure A.3).  The posterior predictive check was based on 18 covariate 

combinations in the not-collared carcass dataset (Table A.1).  From the predicted distribution for 

each set of covariates, the observed not-collared carcass data was within the 50% and 95% 

predicted intervals 82% and 100% of the time, respectively (Figure A.4).  The posterior 

predictive checks demonstrated that the model was consistent with the data a great majority of 

the time.  Therefore, we concluded that the models fit the data well.   
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Table A.1. Codes for radio-collared and not-collared wolf carcass datasets with different season, 

period, wolf harvest zone (WHZ), age and sex category, and number of carcasses used for 

external validation (ev) and posterior predictive checks (pp) in Figures A.1, A.2, A.3, and A.4. 

Code Dataset Season Period
1
 WHZ Age sex category

2
 Number Type 

A collared summer 3 1 af 6 ev 

B not-collared summer 3 1 af 8 ev 

C not-collared summer 3 1 am 9 ev 

D not-collared summer 3 1 p 9 ev 

E not-collared summer 3 1 y 6 ev 

F not-collared summer 3 3 am 12 ev 

G not-collared summer 3 3 y 12 ev 

1 collared summer 1 1 am 6 pp 

2 collared summer 3 1 af 11 pp 

3 collared summer 3 1 am 10 pp 

4 collared summer 3 2 am 6 pp 

5 collared winter 1 1 af 7 pp 

6 collared winter 2 1 af 7 pp 

7 collared winter 3 1 af 15 pp 

8 collared winter 3 1 am 24 pp 

9 collared winter 3 2 af 8 pp 

10 collared winter 3 5 af 7 pp 

11 not-collared summer 2 1 p 13 pp 

12 not-collared summer 3 1 af 28 pp 

13 not-collared summer 3 1 am 50 pp 

14 not-collared summer 3 1 p 55 pp 

15 not-collared summer 3 1 y 39 pp 

16 not-collared summer 3 2 p 11 pp 

17 not-collared summer 3 3 am 22 pp 

18 not-collared summer 3 3 p 13 pp 

19 not-collared summer 3 3 y 12 pp 

20 not-collared summer 3 6 af 11 pp 

21 not-collared summer 3 6 am 26 pp 

22 not-collared summer 3 6 y 11 pp 

23 not-collared winter 3 1 af 15 pp 

24 not-collared winter 3 1 am 17 pp 

25 not-collared winter 3 1 p 12 pp 

26 not-collared winter 3 5 am 12 pp 

27 not-collared winter 3 6 af 12 pp 

28 not-collared winter 3 6 am 20 pp 

  
1
 Period of wolf recovery: 1: recovery period in 1979 – 1995, 2: early growth period in 1996 – 

2002, and 3: late growth period in 2003 – 2012. 
2
 Age and sex categories: af = adult female, am = adult male, y = yearling, p = pup. 
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Figure A.1. The mean multinomial model prediction with 50% and 95% prediction intervals of 

the distribution of mortality causes for six adult female wolf carcasses from wolf harvest zone 1 

among five categories with the validation data plotted in red dots.  Letter “A” corresponds to 

specific validation data described in Table A.1.   
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Figure A.2. The mean multinomial model prediction with 50% and 95% prediction intervals of 

the distribution of mortality causes for different age and sex categories of not-collared wolf 

carcasses from different wolf harvest zones among five categories with the validation data 

plotted in red dots.  Letters correspond to specific validation data described in Table A.1.   
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Figure A.3. The mean posterior predictive value (gray bars) with 50% and 95% credible intervals 

of the distribution of mortality causes for different age and sex categories, season, and recovery 

period of radio-collared wolf carcasses from different wolf harvest zones among five categories 

with the observed data plotted in red dots.  Numbers correspond to specific validation data 

described in Table A.1.   
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Figure A.4. The mean posterior predictive value (gray bars) with 50% and 95% credible intervals 

of the distribution of mortality causes for different age and sex categories, season, and recovery 

period of not-collared wolf carcasses from different wolf harvest zones among five categories 

with the observed data plotted in red dots.  Numbers correspond to specific validation data 

described in Table A.1.  
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Appendix B. External validation and posterior predictive checks for correction between collared 

and not-collared carcasses model 

Methods 

We implemented an external validation and model checking for our fitted model.  The 

validation data that we left out of the model were the adult not-collared carcasses and the 

collared carcasses found in Wisconsin from 1 April 2012 – 30 September 2012.  We predicted 

four quantities: 1) the predicted population size in the summer 2012, .N predict  2) the predicted 

number of adult carcasses on the landscape in summer 2012 from k causes, . kn predict  3) the 

number of adult not-collared carcasses found dead from mortality cause k, V. kpredict , and 4) 

the number of adult collared carcasses found dead from mortality cause k, . kR predict .  For 

V. kpredict , we used the posterior for the average summer probability of collared adult mortality 

from k causes, kc 1 , the posterior for the summer adult carcass detection probability for k causes, 

1kd , and the summer 2012 observed population size, 1152Nobs  : 

1

1

. ~ ( , . )

. ~ ( , . )

. ~ ( )

k k k

k k

V predict binomial d n predict

n predict binomial c N predict

N predict Poisson Nobs

  

For . kR predict  we used the posterior for the average yearly cause-specific allocation of collared 

seasonal mortality rate, km 1 , and the observed number of collared adult carcasses found in the 

summer of 2012, 9R  : 

),,,,,(~. 5,14,13,12,11,1 RmmmmmlmultinomiapredictR k    
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We concluded that if the 50% intervals of V. kpredict  and . kR predict contained the observed 

values at least half the time than our model provided reasonable inferences. 

   For the posterior predictive check, we drew simulated values from the posterior 

distributions and observed whether the simulated values matched our observed data.  Our 

observed data were the total number of not-collared adult carcasses, 
1

n

jk ijk

i

V V


 , and the total 

number of collared adult carcasses, 
jkR , found during the study period in season j from mortality 

cause k.  For each of 1000 draws from the posteriors, . ~ ( , )ijk jk ijkV draw binomial d n  and 

1 2. ~ ( , ,..., , )ijk ij ij ijK ijR draw multinomial m m m R , we summed the number of adult not-collared 

carcasses and collared carcasses in season j due to mortality cause k to get 

1

. .
n

jk ijk

i

V draw V draw


  and  
1

. .
n

jk ijk

i

R draw R draw


 .  We created histograms of . jkV draw  and 

. jkR draw and plotted the observed data, 
jkV  and jkR .  We assumed that the model was consistent 

with the data if the observed number of carcasses in each mortality cause category and season 

were within the middle 50% of the posterior predictive distributions at least half the time.    

Results  

 Our external validation showed that the 50% and 95% prediction intervals overlapped the 

observed data 80% and 90% of the time, respectively (Fig. B.1).  Therefore, we concluded that 

the inferences from the model were generally making sense.  The greatest discrepancy in the 

external validation was that the number of not-collared carcasses that were legally killed was 3 

times higher than the mean posterior prediction (Fig. B.1).  On average, the proportion of known 

carcasses that were legally killed in the population in the proceeding summers was 0.013 (sd = 
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0.007) compared to a proportion of 0.026 known carcasses that were legally killed in summer 

2012.  The 50% prediction interval for the predicted population size in the summer 2012, 

.N predict = 1129 – 1175, contained the observed population size, 1152Nobs  .    

The posterior predictive check demonstrated that the 50% posterior intervals for 

. jkV draw   and . jkR draw  overlapped the observed data 100% of the time (Fig. B.2).  The 

posterior predictive checks demonstrated that the model was consistent with the data and we 

concluded that the model fit the data well.   
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Figure B.1. The mean model prediction with 50% and 95% prediction intervals of the 

distribution of mortality causes for radio-collared ( . kR predict ) and not-collared ( . kV predict ) 

wolf carcasses found in Wisconsin, USA in the summer of 2012 with the validation data plotted 

in red dots.   
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Figure B.2. The mean posterior predictive value (gray bars) with 50% and 95% credible intervals 

of the distribution of mortality causes for radio-collared carcasses (R.draw) and not-collared 

carcasses (V.draw) in Wisconsin, USA with the observed data plotted in red dots.   

  

Summer Winter 
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Appendix C. Additional tables and a worked example of an odds and odds ratio interpretation 

from the patterns in mortality causes multinomial analysis. 

Worked example of an odds and odds ratio interpretation from Table C.1 

 Tables C.1 and C.2 give the model results in terms of log odds.  In order to get an odds 

interpretation, it is necessary to exponentiate the log odds.  For example, the log odds are 1.694 

for a collared yearling carcass to have an illegal versus natural mortality cause determination 

(Table C.1).  The odds of a collared yearling wolf carcass having an illegal versus natural 

mortality cause determination is exp(1.694) = 5.441.  Said another way, for a yearling collared 

carcass the estimated odds that its mortality cause was illegal kill instead of natural mortality was 

5.441.   

 Odds ratios are another way to interpret these data.  An odds ratio is the ratio of two odds.  

We calculate the odds that a collared adult male wolf carcass and a collared adult female wolf 

carcass had mortality cause determinations of illegal versus natural mortality as exp(0) = 1 and 

exp(-0.123) = 0.884, respectively (Table C.1).  Therefore, the odds ratios of yearlings to adult 

males is 5.441/1 = 5.441 and yearlings to adult females is 5.441/0.884 = 6.153.  Overall, we can 

say that the odds were > 5 times for collared yearling carcasses to have an illegal versus natural 

mortality cause determination compared to adults.   
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Table C.1. Mean posterior parameter estimates (and standard deviations) from a multinomial 

model of the probability of five mortality causes for radio-collared wolves in Wisconsin, USA 

from 1979 – 2012 based on the variables of season, period, age and sex, and wolf harvest zone 

(WHZ). Baseline covariate values were: Season = summer, Period = late growth, Age and sex = 

adult male, WHZ = 1. 
  season period age and sex wolf harvest zone (WHZ) 

Logit
1
 Inter-

cept 

winter Recov-

ery 

early 

growth 

adult 

female 

yearling pup WHZ 

2 

WHZ 

3 

WHZ 

4 

WHZ 

5 

 

log

I Np p
  

-0.37 

(0.58) 

0.31 

(0.51) 

-0.58 

(0.64) 
-1.61 

(0.51) 

-0.12 

(0.49) 
1.69 

(0.71) 

-0.39 

(0.76) 
1.66 

(0.60) 

0.41 

(0.72) 
1.59 

(0.84) 

1.10 

(0.62) 

 

log

L Np p
 

1.20 

(0.65) 
-3.32 

(0.71) 

-0.54 

(0.91) 
-2.34 

(0.86) 

0.61 

(0.67) 
-80.56

2
 

(60.27) 

0.14 

(1.04) 

0.06 

(0.86) 

0.12 

(0.95) 

-1.18 

(1.58) 

-1.24 

(1.12) 

 

log

V Np p
 

1.01 

(0.65) 
-1.91 

(0.64) 

-1.21 

(1.02) 

-1.33 

(0.75) 

-0.36 

(0.65) 

0.26 

(0.98) 
-81.29

2
 

(59.56) 

-1.56 

(1.425) 

-0.86 

(1.04) 

-1.11 

(1.56) 

-0.32 

(1.02) 

 

log

U Np p
 

1.78 

(0.57) 

-2.18 

(0.57) 

-0.12 

(0.70) 
-1.26 

(0.66) 

-0.60 

(0.57) 

-2.20 

(1.47) 

-0.48 

(0.88) 

-0.15 

(0.75) 

-2.35 

(1.44) 

-1.85 

(1.56) 
-2.43 

(1.44) 

Bold type indicates that the 95% credible interval does not overlap 0. 
1
 Mortality causes: N = natural, I = illegal kill, L = legal kill, V = vehicle strike, and U = 

unknown. 
2 

Very low posterior estimates were because there were no observed carcasses in these 

categories. 
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Table C.2. Mean posterior parameter estimates (and standard deviations) from a multinomial 

model of the probability of five mortality causes for not-collared wolves in Wisconsin, USA 

from 1979 – 2012 based on the variables of season, period, age and sex, and wolf harvest zone 

(WHZ). Baseline covariate values were: Season = summer, Period = late growth, Age and sex = 

adult male, WHZ = 1. 
  season period age and sex wolf harvest zone (WHZ) 

Logit
1
 Inter-

cept 

winter recov-

ery 

early 

growth 

adult 

female 

yearling pup WHZ 

2 

WHZ 

3 

WHZ 

5 

WHZ 

6 

 

log

I Np p
  

0.21 

(0.56) 

-0.13 

(0.47) 

0.30 

(1.00) 
-1.04 

(0.48) 

0.83 

(0.55) 

0.89 

(0.75) 

0.35 

(0.64) 

0.82 

(0.61) 

0.70 

(0.69) 
3.26 

(1.24) 

3.92 

(1.41) 

 

log

L Np p
 

2.99 

(0.48) 

-2.58 

(0.47) 

-81.03
2
 

(58.72) 

-4.46 

(0.90) 

0.64 

(0.56) 

1.06 

(0.73) 

1.01 

(0.59) 
-1.34 

(0.68) 

0.18 

(0.62) 

0.99 

(1.28) 

1.42 

(1.43) 

 

log

V Np p
 

1.95 

(0.49) 

-1.22 

(0.43) 

-0.45 

(1.00) 

-0.78 

(0.44) 

0.25 

(0.54) 
1.71 

(0.70) 

1.39 

(0.56) 

-0.09 

(0.57) 

-0.13 

(0.62) 
2.36 

(1.23) 

3.23 

(1.40) 

 

log

U Np p
 

-1.04 

(0.60) 
-1.36 

(0.53) 

0.53 

(1.13) 

-0.57 

(0.55) 

0.51 

(0.66) 

1.10 

(0.83) 

1.24 

(0.66) 

0.86 

(0.69) 

0.17 

(0.84) 
3.62 

(1.30) 

2.88 

(1.50) 

Bold type indicates that the 95% credible interval does not overlap 0. 
1
 Mortality causes: N = natural, I = illegal kill, L = legal kill, V = vehicle strike, and U = 

unknown. 
2 

Very low posterior estimates were because there were no observed carcasses in this category.  
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Appendix D. Supplemental material for the correction between collared and not-collared carcass 

datasets analysis 

 

Table D.1. Mean posterior parameter estimates (and standard deviations) from a state-space 

model relating observed collared wolf carcasses and not-collared wolf carcasses found in 

Wisconsin, USA in 2003 – 2012 to estimate seasonal and cause-specific probabilities of 

mortality for collared wolves (p), the allocation of the mortality rate (m), and the probabilities for 

detection of wolf carcasses (c).    

  Mortality cause 

Parameter Season Natural Illegal Legal Vehicle Unknown 

p summer 
0.0021 

(0.0014) 

0.0040 

(0.0017) 

0.0110 

(0.0029) 

0.0032 

(0.0011) 

0.0115 

(0.0050) 

p winter 
0.0225 

(0.0063) 

0.0216 

(0.0065) 

0.0020 

(0.0008) 

0.0034 

(0.0011) 

0.0099 

(0.0043) 

m summer 
0.0802 

(0.0419) 

0.1453 

(0.0437) 

0.3123 

(0.0560) 

0.1128 

(0.0357) 

0.3495 

(0.0607) 

m winter 
0.3704 

(0.0572) 

0.3664 

(0.0512) 

0.0398 

(0.0169) 

0.0664 

(0.0215) 

0.1570 

(0.0489) 

c summer 
0.3788 

(0.1592) 

0.5302 

(0.1245) 

0.7849 

(0.0727) 

0.7593 

(0.0818) 

0.3413 

(0.1023) 

c winter 
0.2159 

(0.0816) 

0.3946 

(0.0890) 

0.6944 

(0.1096) 

0.7293 

(0.0897) 

0.1959 

(0.0887) 

 
 

Table D.2. The observed mean population size (Nobs) and range and estimated median (N) population 

size and 95% credible interval of the Wisconsin wolf population size in summer and winter from 2003 – 

2011.   

Year Summer 

Nobs 

Range Summer 

N 

95% Winter 

Nobs 

Range Winter N 95% 

2003 472 440 - 503 450 407 - 493 391 373 - 410 365 319 - 407 

2004 546 491 - 602 514 468 - 561 450 435 - 465 427 381 - 471 

2005 637 586 - 687 612  563 - 663 486 467 - 504 451 393 - 500 

2006 676 615 - 736 648 596 -701 565 546 - 583 534 487 - 582 

2007 742 684 - 799 691  607 - 751 563 549 - 576 519 455 - 573 

2008 789 728 - 848 742 684 - 799 655 637 - 673 614 555 - 669 

2009 905 887 - 923 879 820 - 939 726 704 - 747 679 621 - 735 

2010 1003 981 - 1024 974 903 - 1040 803 782 - 824 758 690 - 818 

2011 1109 1088 - 1130 1067 982 - 1138 834 815 - 880 758 649 - 835 
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Chapter 2: Survival of a recolonized and harvested wolf population in Wisconsin from 

1980 – 2013 

Abstract 

Wisconsin’s gray wolf (Canis lupus) population increased from 20 to > 800 wolves (1980 – 

2013) and has recovered from endangered status under the U.S. Endangered Species Act to 

become a legally harvested species.  Wisconsin’s Department of Natural Resources is developing 

new policies for wolf harvest and management.  During this important decision-making process 

for wolves, we provide critical information on cause-specific mortality and its relation to time 

and habitat quality.  Appropriate analysis of cause-specific mortality requires first estimating 

cause-specific hazards, from which the cause-specific mortality, or “cumulative incidence 

function”, is obtained.  In our case, this was complicated by the fact that some deaths were likely 

to be incorrectly classified as censoring, violating the usual survival analysis requirement that 

censoring is noninformative and not statistically associated with mortality risk.  This novel 

approach to survival analysis models endpoints (last radio-telemetry location) for 499 radio-

collared wolves in two parts.  First, we modeled cause-specific probabilities that an endpoint was 

due to a particular cause given that an endpoint occurred.  Known death causes made up 45% of 

events and the rest were censored.  Second, we modeled monthly hazards as smooth functions of 

time to estimate approximate probability of a wolf reaching its endpoint in some month.  We 

suspected that some wolves that died but were not found were misclassified as censored wolves, 

and we used auxiliary data from annual population and pup estimates to inform this 

misclassification.  We estimated that 15% of deaths were recorded as censored wolves.  During 

winter, monthly hazards were double that of summer, and better habitat quality decreased 

hazards.  There was substantial inter-annual variation in survival and cause-specific mortality 
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rates with some years having 10 times more illegal mortality or natural mortality compared to 

other years.  We estimated 74% annual survival for average habitat quality, and 76% annual 

survival for a 10% increase in habitat quality.  On average, 1 out of 10 wolves was illegally 

killed, and the rates of illegal killing have decreased since 2011.  Mortality instead of recruitment 

appears to be regulating wolf population growth, and on average > 22% annual human-cause 

mortality leads to a negative population growth.  Natural and human-caused mortality appears to 

be additive when human-caused mortality is < 15% annually, and there may be some 

compensation for higher mortality rates.  Annual survival has been declining since 2008 and 

human-caused mortality rates have been > 22% in most years since 2008.   

Introduction 

Recovery occurred for < 2% of species listed as endangered under the U.S. Endangered 

Species Act (ESA) since 1974 (Taylor et al. 2005).  In 2012, gray wolves (Canis lupus) in the 

Western Great Lakes transitioned through delisting under ESA to a hunted species under state 

law.  For any delisted species, the U.S. Fish and Wildlife Service requires a 5-year post-delisting 

monitoring period during which ESA’s emergency listing rule can relist the species to ensure 

species’ well-being (Refsnider 2009).  Removal of ESA protections for wolves is controversial, 

and people disagree about whether wolves have recovered sufficiently over a significant portion 

of their range (Bruskotter and Enzler 2009, Bruskotter et al. 2013).  Currently, wolves are two 

years into the post-delisting monitoring period and Wisconsin’s Department of Natural 

Resources (WDNR) is developing a new plan for wolf management that may include a 

population goal and harvest policy.  Here, we provide critical information to inform 

conservation: an analysis of temporal patterns and habitat influences in wolf mortality in 

Wisconsin from recolonization (circa 1980) through the first years of harvest. 
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Recolonization of wolves in Wisconsin began in the late 1970s with five packs 

establishing territories in forested habitat of northwestern Wisconsin adjacent to occupied wolf 

territory in Minnesota by 1980 (Wydeven et al. 2009).  A decade later, ten packs were 

established in Wisconsin with some pack territories expanding into the forested north-central 

regions of the state.  Five years later in 1995, the wolf population increased to > 80 wolves in 21 

packs and extended their range into a somewhat insular area of forest in central Wisconsin (Thiel 

et al. 2009).  Colonization of the central forest region coincided with increasing wolf population 

growth and wolves began moving into the upper peninsula of Michigan (Beyer et al. 2009).  

During these first fifteen years of recolonization, wolf packs established territories in areas with 

relatively few roads (< 0.45 km roads / sq km; Mladenoff et al. 1995).  Wolf packs continued to 

establish territories in areas of low road density into 1997 when 150 wolves occurred in 35 packs 

(Mladenoff et al. 1999).  Wolf numbers continued to increase at a rate of 30% per year and 

reached > 800 wolves in 213 packs in 2012, however the growth rate has decreased as wolf 

numbers increased, suggesting a density-dependent mechanism arising from saturation of the 

best habitat (Mladenoff et al. 2009, Van Deelen 2009).  A final assessment of habitat use based 

on wolf pack locations in 2006 – 2007 found that when more packs were on the landscape, the 

best predictors of pack location were lack of agriculture and lack of roads (Mladenoff et al. 

2009).     

In Wisconsin’s wolf range, social tolerance for wolves decreased during a time of 

frequent policy shifts and increasing wolf numbers.  Three times during 2003 – 2011 

Wisconsin’s wolves were federally listed and subsequently delisted from the ESA, and the state 

of Wisconsin was denied and approved, respectively, to use lethal methods to control problem 

wolves each time (Refsnider 2009, Olson 2013).  Since 2003, years when wolves were listed 
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under the ESA during summer associated with increased probability of a wolf in Wisconsin 

dying from illegal killing, and people living in wolf range reported an increased fear of wolves 

and an inclination to illegally kill a wolf (Olson 2013, Treves et al. 2013).  Hence, changes in 

policy likely affected the overall survival for wolves as well.     

Through extensive radio-collaring, tracking, observations, and territory mapping, WDNR 

has maintained accurate and consistent counts and distribution estimates of wolves and wolf 

packs during the >30 years of wolf reestablishment.  WDNR has radio-telemetry records on ~ 

500 individual wolves.  Radio-telemetry data can provide time-to-event information needed to 

estimate survival when individuals are tracked until death (Heisey and Fuller 1985, Pollock et al. 

1989).  Incomplete radio-telemetry records occur when individuals are not tracked until death, 

and these cases require careful statistical approaches (Klein and Moeschberger 2003).  In a 

survival analysis, we observe each individual until death (or the event of interest) or loss-to-

follow-up.  The loss-to-follow-up event we call censoring, and a critical assumption in survival 

analysis is statistical independence between censoring times and death times (Klein and 

Moeschberger 2003).  The assumption of independent censoring is rarely tested, but violating 

this assumption could bias survival estimates high if some censoring events are actually 

misclassified deaths (Leung et al. 1997, Tsai et al. 1999).              

In wildlife population studies, assumptions of independent censoring in survival analysis 

may not always be valid particularly for species whose life spans exceed the battery life of 

telemetry transmitters.  With gray wolves, a significant portion of the wolves are not tracked 

until death, and loss-to-follow-up could occur because the study ended, the wolf slipped out of 

its collar, the wolf’s collar failed because of battery life or technology failure, the wolf dispersed 

out of the study area, or the wolf was illegally killed and its collar was destroyed.  Clearly, the 
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latter reason for the loss-to-follow-up is not independent of death and misclassification would 

bias survival rates if any of these mortality events were considered censoring events.  Also, 

dispersal probably associates with increased hazard and would be another violation of the 

independent censoring assumption.  Integrated models for wolves in Scandinavia and Wisconsin 

that incorporate count data with radio-telemetry data suggest discrepancies between the data 

sources that indicate non-independent censoring (Liberg et al. 2012, Stenglein et al. in review).  

However, effects of non-independent censoring have not been modeled explicitly in telemetry-

based survival analysis.  In the case of a recolonized and newly harvested wolf population in 

Wisconsin, accounting for non-independent censoring will improve the survival estimate and 

may suggest a more accurate rate of illegal killing than has previously been documented.   

Here, we analyze cause-specific mortality for radio-collared wolves in Wisconsin from 

1980 – 2013 and the associated variation relative to age class, season, time, and habitat quality.  

Our objectives were to: 1) estimate cause-specific probabilities of endpoints with respect to time, 

2) estimate the overall and cause-specific hazards of endpoints with respect to time, 3) evaluate 

importance of selected risk factors on mortality hazards while accommodating the effects of 

misclassification, and 4) estimate the rate of non-independent censoring in the radio-telemetry 

data. 

Methods 

Study area and datasets 

Our study area was north and central Wisconsin, USA, during 1980 – 2013.  Northern 

Wisconsin forests are dominated by sugar maple (Acer saccharum) and other deciduous species 

on the dominant mesic glacial till plains, with aspen-birch (Populus spp.- Betula papyrifera) and 

pine (Pinus spp) on sandy glacial outwash.  Conifer swamps of species such as fir (Abies 
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balsamea), spruce (Picea spp) and cedar (Thuja occidentalis) with some deciduous species are 

common.  The sandy central Wisconsin forest is dominated by oak (Quercus spp) and pines.  

Most forested areas are in northern Wisconsin (i.e. northern forest region), but a smaller isolated 

portion of forest makes up the central forest region.  The latter region is surrounded by 

agriculture.  Cultivated crops, hay, and pasture land are interspersed throughout Wisconsin, but 

most agriculture occurs in central and southern Wisconsin (see Fig. 1 in Chapter 1).  Wolves 

primarily occupy the northern forest region (wolf harvest zones [WHZs] 1, 2, 3, and 4) and the 

central forest region (WHZ 5) of Wisconsin (Fig. 1B).  

  We used two sources of wolf data provided by WDNR.  First, the radio-collared wolf 

dataset consisted of > 40,000 weekly locations of 499 wolves.  Wolves were generally only 

radio-collared if they were ≥ 4 months old (Wydeven et al. 2009).  We summarized these data by 

month and kept only the last record in each month for each wolf, resulting in 9,811 monthly 

location records (Fig. 1A).  For each location we compiled data for month, year, age class (adult 

[≥ 24 months] or non-adult), season (summer: April – September, winter: October – March), 

habitat quality (Fig. 1B; Mladenoff et al. 2009), and whether it was an endpoint (i.e., the last 

record for an individual).  If the location was an endpoint, we also recorded cause of endpoint 

consisting of: 1) loss-to-follow-up from unknown causes (unknown censoring, hereafter), 2) 

surviving until the end of the study or loss-to-follow-up during the study and then found dead 

sometime after its endpoint (known censoring, hereafter), 3) dead because of illegal killing 

(illegal kill, hereafter), 4) dead because of human causes other than illegal killing, including 

vehicle collision, lethal control action, and harvest (other human mortality, hereafter), and 5) 

dead because of other causes, including disease, intraspecific strife, and unknown causes (other 

death, hereafter). 
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Habitat quality was extracted from a raster surface of wolf pack habitat probability (Fig. 

1B from plate 5 in Mladenoff et al. 2009) for each location with Spatial Analyst tools in ArcMap 

(Version 10; Environmental Systems Research Institute 2009).  We used Mladenoff et al.’s 

(2009) most recent wolf habitat model from wolf pack locations in 2007 – 2008.  Their analysis 

showed that wolf packs were using locations with lower road density and lower amounts of 

agriculture than randomly generated pack territories (Mladenoff et al. 2009).  Mladenoff’s 

habitat probability model did not use the same data that we use in our analysis and was generated 

on the basis of pack territory mapping.  Therefore, using the wolf pack habitat probability model 

as a predictor for individual wolf endpoints events is novel and appropriate.   

The second source of data was annual population counts and corresponding annual 

numbers of pups estimated in Wisconsin from 1980 – 2013.  Each winter, WDNR biologists 

counted wolves and estimated the number of new recruits from observation of changes in wolf 

pack sizes and from howl surveys during the previous summer.  Annual winter population counts 

derived from snow-tracking by volunteers and agency personnel, direct observation, photos from 

wildlife cameras, and by aerial counts in packs containing radio-collared individuals (Wydeven 

et al. 2009).  Annual winter counts (for population size and number of new recruits) were 

reported as ranges (lower bound is the minimum count) in WDNR annual reports, and we used 

the midpoint in each year as our count.  We used the population count model of Stenglein et al. 

(unpublished) to estimate annual survival rates (Appendix A).       

Statistical analysis and modeling 

Our goal was to estimate the cause-specific mortality, and to understand the factors 

affecting the cause-specific mortality over space and through time.  Our approach differs from 

most survival analysis that models an event of interest (often death) and assumes that the other 
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endpoints are non-informative and hence are censored from the analysis (Klein and 

Moeschberger 2003).  The likelihood for a survival model can be written as the product of 

component likelihoods for each record, whether it is a censored observation, an observation from 

an individual that just entered the study, or a death observation (Heisey and Fuller 1985).  Under 

the assumption of independent censoring and death times, the censoring contribution to the 

likelihood can be factored from the death contribution, allowing the death contribution to be 

maximized independently of the censoring contribution (Klein and Moeschberger 2003).  This 

assumption is essentially equivalent to an assumption of additive mortality where hazards for 

mortality and for censoring are completely additive and unassociated (Heisey and Patterson 

2006).  This also leads to the appearance that censored data can be essentially ignored.  Although 

this result is analytically convenient, it is inappropriate to assume independent censoring without 

testing that assumption.   

One case in which censoring events can be statistically informative is if some mortality 

endpoints get misclassified as censored endpoints.  But death does not need to occur at the exact 

time of censoring for censoring to be informative; the censoring event only needs to be 

statistically associated with an increased risk of mortality.  An example of this is if the animal 

disperses out of radio-tracking range, and the act of dispersing increases the animal’s mortality 

hazard.  Both of these cases, direct misclassification and elevated mortality risk, can be modeled 

as misclassified mortalities, although in the latter case, the misclassification probability is 

serving as a proxy for the elevated risk associated with the informative censoring event and does 

not exactly depict the misclassification mechanism.   

Here, we modeled all endpoints because we could not be confident about the assumption 

of independent censoring for endpoints that did not end in death (Chapter 1, Stenglein et al., 
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unpublished).  By incorporating auxiliary data, we estimated the probability that a death was 

misclassified as an unknown censoring event, which allowed us to obtain a misclassification-

adjusted mortality hazard.  We describe our model in three parts: 1) the cause-specific endpoint 

probability, 2) the hazard function, and 3) the misclassification effect.  We used a hierarchical 

Bayesian modeling approach to analyze the endpoints for radio-collared wolves.      

Cause-specific endpoint probabilities 

We used a multinomial logit model to relate cause-specific endpoints to covariates, 

including a smooth function for time.  For each observed endpoint,   , with           and 

  is the total number of endpoints (equal to the number of individuals), we modeled cause-

specific probabilities that the enpoint   was observed to be due to cause  ,    
 , where   

      and   is the number of causes, as categorical and ∑    
    

   : 

               (    
      

        
 ) 

We refer to    
  as the error-prone classification probabilities because these are the probabilities 

that we observed and they likely are biased by misclassification.  We used auxiliary data to 

adjust these error-prone probabilities for misclassification errors.  We related the observed cause-

specific probabilities    
  to the true cause-specific probabilities     through a misclassification 

parameter     informed by auxiliary data (see misclassification section):    
   ∑       

   

     .  We defined parameter     as the probability that an individual that actually experienced 

the endpoint   was observed and classified as endpoint  ; these parameters generalize the ideas of 

test sensitivity and specificity (Appendix B).   

Through the logit link, we related the accurate probabilities      to the linear 

predictor              .  The     were covariate data and came from an       matrix 

design   with row                      , and the     was an       matrix   of regression 
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coefficients (log odds ratios) with          and   number of regression coefficients.  The 

       portion of the linear predictor for observation   is a smooth function of time and was 

incorporated into the cause-specific endpoint probabilities by means of a low-rank thin-plate 

spline (Ruppert et al. 2003; Appendix C):         

     
    

∑      
   

 

                   

We include some detail about the linear predictor to eventually clarify how the auxiliary 

data inform the true cause-specific probabilities    .  The linear predictor had     terms for 

each endpoint cause  .  In our case, we had four covariates plus an intercept       and we used 

20 knots in the spline       .  We keep discussion of the spline in Appendix C and keep the 

spline term        together for simplicity.  The linear predictor for cause   was:          

                                            .  For an endpoint        was 1 for the 

intercept,      was the time of the event as part of the time spline,      was an indicator variable 

for non-adults,      was an indicator variable for winter, and      was the habitat quality value.  

We defined the reference category as adult wolves in summer with average habitat quality and 

this category had all regression coefficients equal to 0.  We used unknown censoring as a 

constraint and set       , for            .  We put a normal prior on each of the    s for 

          with mean equal to 0 and standard deviation equal to 100:                     

Hazard function 

 We modeled the endpoint cumulative monthly hazard using discrete time proportional 

hazards, or a complementary log-log (cloglog) model to relate radio-collared relocation 

observations to covariates, including a smooth function of time.  If the log cumulative monthly 
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hazard is  , the monthly event-free probability is     
, and the monthly event probability is 

      
.  The likelihood contribution for a single wolf is the product of these terms over the 

span of months during which the wolf was monitored.  The resulting product has the same 

appearance as arises from a same-length series of independent Bernoulli trials modeled with the 

cloglog link (the conditional independence of survival data gives rise to this appearance; Heisey 

et al. 2007).  Thus we modeled the monthly relocations of radio-collared wolves,    {   }, for 

        and   is the total number of observations, as independent Bernoulli random 

variables with    probability of an endpoint for relocation.  Then, through the cloglog link, we 

related the    probability to a linear predictor,                    , for           and 

  is the total number of predictor variables, and we transformed    into the hazard.   

                 

                                 

                

We let   be the grand mean, and defined a vague, normal prior with mean equal to 0 and SD 

equal to 100:                   .  The   s were the increments for each year   from the 

grand mean  , and we also defined normal priors on the   s with mean equal to 0 and SD equal 

to 100:                    , for          .  We set      as a constraint and to 

establish a meaningful baseline.  Together, the      term can be thought of as a year-specific 

intercept.  The     terms are data that come from a potentially time-varying covariate (risk 

factor) matrix   with dimensions      , and row                     .  The    terms are 

from the vector   of regression coefficients where                .  We put a normal, 

vague prior on each of the   s with mean equal to 0 and standard deviation equal to 100: 
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                  .  The       portion of the linear predictor for observation   is a smooth 

function of time and was incorporated into the hazard function by means of a low-rank thin-plate 

spline (Appendix C).  Written out for observation   and keeping the spline portion together, the 

linear predictor was:              ]]                                      .  The index for 

          ]] denotes that the year increment corresponds the year of observation  ,      was the 

time of the event as part of the time spline,      was an indicator variable for non-adults,      was 

an indicator variable for winter, and      was habitat quality value for observation  .  

We now use slightly different generalized notation to accommodate the same time scale 

for the cause-specific endpoint probabilities and the hazard function.  For month   where 

          and   is the total number of months, we modeled the cause-specific endpoint 

monthly hazard,      , as the product of the overall hazard,     , and the cause-specific 

probability that the endpoint was due to cause   given that there was an endpoint,      :   

                  

Misclassification 

To handle informative censoring, we took a misclassification approach, where some of 

the observed unknown censoring may have actually been a mortality event.  We defined the 

known mortality portion of the monthly hazard as the baseline hazard times the sum of the 

baseline cause-specific probabilities that the endpoint was due to a known mortality cause  .  Our 

total baseline hazard included the year-specific intercept, the time spline, and the average season 

effect, so that the baseline hazard         was:  
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Our baseline cause-specific probabilities for cause  ,         , included the intercept, the time 

spline, and the average season effect: 

                       
    

 
           

         
        

∑          
   

 

We included the average season effect in the baseline hazard and the baseline cause-specific 

probabilities because we knew that there could be large seasonal differences for the hazard and 

the probabilities (Chapter 1).  If we chose to use just summer or just winter as the baseline 

informed by our auxiliary data, than we could have biased our misclassification into representing 

too large or too small of a correction.    

For the misclassification, we were interested in the known mortality portion of the 

monthly hazard which was mortality causes         for illegal kill, other human mortality, 

and other death causes respectively, so we wrote this as: 

         ∑       

 

   

         

and defined         as the overall mortality hazard.  Here, the        s are the misclassification-

adjusted endpoint probabilities.  To drive this misclassification-adjustment, we incorporated 

auxiliary data,         (Appendix A), to allow for the possibility that some of the mortality 

endpoint probabilities (                   might have been misclassified as censoring instead 

of mortality.  In essence,         served as a prior for the overall mortality hazard        .  In 

survival analysis, log hazards tend to converge to normality more rapidly than hazards or finite 

mortality estimates.  Therefore, we modeled log of the auxiliary hazard as normally distributed 

with mean equal to log of the overall mortality hazard and standard deviation equal to log of the 
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measurement error from the auxiliary data:                                            
  .  

Through this distribution, the auxiliary data informed the baseline hazard         and the 

∑      
 
    term for the cause-specific probabilities that the endpoint was due to a known 

mortality cause.  This meant that the baseline monthly hazard         could change by year 

depending on the auxiliary data.   

 We took a generalized sensitivity and specificity approach and defined a misclassification 

      square matrix   where row   represented the true cause of an endpoint for   total endpoint 

causes, and column   represented the observed cause for   total endpoint causes and      

(Walter and Irwig 1988).  The entry     was the conditional probability that given the actual 

endpoint was from cause  , it was classified as an event from cause  , and ∑    
 
     .  Where 

there was no misclassification for cause  , then       when    .  We assumed that an animal 

which truly experienced censoring was never misclassified as having died, hence           

 .  We limited our inference to                , and                because we were interested 

in whether endpoints that were actually known mortality were misclassified and observed as 

unknown censoring events.  For such a misclassification event, we did not have the information 

in our dataset to inform which known mortality cause        or    was misclassified as 

unknown censoring.  Therefore, we set a single misclassification parameter   to represent the 

proportion of any mortality that was observed and classified as unknown censoring, and we set 

up our misclassification matrix as: 

    

[
 
 
 
 
     
     
       
       
       ]
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We assigned   a uniform prior:                 .  The probability      was the probability 

that a mortality event was classified correctly (Appendix B); it generalizes the idea of a true 

positive from diagnostic testing theory.   

Details of model runs and derived parameters 

We ran the cause-specific endpoint probabilities portion of the model alone without 

auxiliary data (unaugmented model) to visualize the patterns in the event probabilities over time 

from the radio-collared data.  We compared the unaugmented model to the augmented model to 

visualize how the event probabilities changed in the presence of auxiliary data.  Also, we ran the 

hazard portion of the model alone without auxiliary data to visualize the hazard over time from 

the raw radio-collared data.  We used this run of the model and plotted it with the auxiliary data 

to see whether there appeared to be a discrepancy between the hazard from the radio-collared 

data and the hazard from the auxiliary data.  Finally, we ran the augmented model which 

included the cause-specific endpoint probabilities portion, the hazard portion, and the 

misclassification portion informed by auxiliary data.  

We derived the overall mortality hazard         for different age class and season 

combinations and for different values of habitat quality.  From the overall mortality hazard, we 

estimated annual survival rates    for different values of the parameters: 

         ∑          
           
              where            to represent annual survival from 

1981 – 2013.  We did not calculate annual survival in 1980 because the first records did not start 

until May 1980 and the data for that year were very sparse.   

To get cause-specific mortality rates for illegal kills, other human mortality, and other 

deaths, we were careful to obey the “conservation of mortality” principle (Heisey and Patterson 

2006).  We calculated survival for each month of each year  ,      , and we defined     as the 
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mortality rate in year   from cause   as the proportion of the survival that was due to cause  : 

     ∑         
           
                  . 

We estimated survival rates for adults and non-adults in summer and winter for average 

habitat quality, a 10% increase in average habitat quality, a 10% decrease in average habitat 

quality, and for each habitat quality class from Mladenoff et al. (2009).  We used the midpoint 

from the range in each probability class (e.g., for the lowest probability class, the probability is 0 

– 0.1 and we used 0.05 as the habitat quality value for this class).  Then, we found the average 

habitat quality for each wolf harvest zone (WHZ) and we calculated the average annual survival 

rates based on this value by WHZ.  In each case, we averaged the annual survival rates to get an 

average annual survival rate for each combination of adults and non-adults in summer and 

winter:    ∑   
  
     ⁄ .  Finally, we calculated a weighted average of this average annual 

survival rate by age class and season by taking into account the number of radio-collared wolves 

in each of the age class and season categories.  We calculated all of these derived parameters 

within the model so that we could get distributions from all of them.   

We ran the three models with a Gibbs sampler in Program JAGS (Plummer 2003) with 

library ‘rjags’ (Plummer 2011) in program R (R developement Core Team 2013).  We ran one 

chain and discarded the first 10,000 iterations as burn-in.  Then, we sampled the posteriors for an 

additional 10,000 iterations. 

Results 

Without auxiliary data, 16% of endpoints were due to known censoring, and 16%, 10%, and 19% 

were due to illegal kills, other human mortality, and other death, respectively (Table 1).  Other 

deaths        were primarily natural mortality from disease        and intraspecific strife 

      .  Unknown censoring was the most common cause for endpoint (39%) and was more 
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prevalent in non-adults compared to adults (Fig. 2).  Proportion of illegal kills was highest during 

1980 – 1985 in winter, and proportion of known censoring was highest in 2013 because of 

endpoints occurring at the end of the study (Fig. 2).   

The endpoint monthly hazard for average habitat quality without auxiliary data and 

without the year effects     ranged from 0.022 – 0.240, with an average monthly discrete hazard 

of 0.063 (Fig. 3).  The endpoint monthly hazard was highest in 1980 – 1992, and again in 2013 

because of known censored wolves that survived until the end of the study (Fig. 3).  The monthly 

hazard for an endpoint was twice as high in winter as in summer, and was similar in non-adults 

compared to adults (Fig. 3).   

Without auxiliary data, average endpoint overall mortality hazard (i.e., the hazard from 

the known mortality causes of illegal kills, other human mortality, and other death) ranged from 

0.018 – 0.084, with an average overall mortality hazard of 0.024 (Fig. 4).  Auxiliary information 

from the count model estimated overall mortality hazards that ranged from 0.006 – 0.049, with 

an average monthly overall mortality hazard of 0.025 (Appendix A).  Overall, average overall 

mortality hazards from the radio-collared model were low compared to overall mortality hazards 

from the population count model (auxiliary data), and especially during the mid-1980s and most 

years since 1997 (Fig. 4).  The average monthly overall mortality hazard for the radio-collared 

data translated into an average annual survival rate of 0.750 (            ).  We estimated an 

average annual survival rate of 0.741 from the auxiliary information (            ).  Therefore, 

on average, there was ~1% more annual mortality represented in the auxiliary data than from the 

radio-collared data.  We expected that the auxiliary data would inform the misclassification 

model to support a positive estimate of   to show that some mortality was misclassified as 

unknown censoring.    
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In the augmented model, mean   = 0.145 (SD = 0.067), which meant that on average 

14.5% of the radio-collared adult wolves that were actually dead were misclassified as unknown 

censoring events.  Incorporating the misclassification predictably shifted the cause-specific 

endpoint probabilities to have slightly higher probabilities for the known mortality causes (i.e., 

illegal kill, other human mortality, other death) and a lower probability for unknown censoring 

(Fig. 2).  We could not attribute a separate proportion of the misclassified mortality to each of 

the known mortality causes, and instead each of the known mortality causes increased 

proportionally to other known mortality causes.   

Cause-specific endpoint probabilities differed by age class, season, and habitat quality 

values but few of the odds ratios were different from 0 (Table 2).  Adult wolves in summer had 

ten times the odds that an endpoint was due to unknown censoring versus illegal kill.  Non-adult 

wolves had three times higher odds of unknown censoring compared to other human mortality.  

In winter, adult wolves were three times more likely to have an endpoint from illegal kill and 

half as likely to have an event from other human mortality versus unknown censoring (Table 2).  

An increase in habitat quality increased the odds than an endpoint was from unknown censoring 

versus other human mortality (Table 2).  For mortality causes, an increase in habitat quality 

increased the odds that an endpoint was due to other death (i.e., primarily natural mortality) 

versus illegal kill and other human mortality.  Also, increase in habitat quality increased the odds 

that an endpoint was due to illegal kill versus other human mortality (Table 2).    

Patterns in cause-specific endpoint probabilities also changed over time (Fig. 2).  Illegal 

kills were higher in winter than summer (Fig. 2).  The highest proportion of illegal kills was in 

the first few years of recovery, and then the proportion of illegal kills decreased in the late 1980s 

to early 1990s.  The proportion of illegal kills increased again in 2006 – 2011 (Fig. 2).  



70 

 

Proportion of other human mortality was highest in summer, and higher in adults than non-adult 

wolves.  Proportion of other human mortality was highest in the early 1990s and since 2008.  

Other deaths, which was mainly natural mortality, was higher in adults than non-adults and 

equivalent across seasons.  The highest proportion of other death was in the mid-1980s and in 

the early 2000s (Fig. 2).   

After incorporating auxiliary data, monthly hazard for average habitat quality ranged 

from 0.008 – 0.237 with an average monthly hazard of 0.056.  The monthly hazard was lowest 

for adults during summer (Mean = 0.034).  Season had a larger effect on monthly hazard than 

age class (Table 3).  In winter, monthly hazard was double that in summer (          ), and 

the probability that there was a higher hazard in winter than summer was 100% (proportion of 

posterior distribution > 0).  Monthly hazard for yearlings and pups was 21% higher than for 

adults (          ), and the probability of a higher hazard in yearlings and pups than in adults 

was 96.5%.  A 10% increase in habitat quality decreased monthly hazard by 9% (          

    ; Table 3).  

Cause-specific hazards varied through time and for different age class and season 

combinations (Fig. 5).  Cause-specific hazards are meaningful alone and can be used to estimate 

monthly and annual cause-specific mortality and censoring rates.  The largest hazard overall was 

due to unknown censoring and young wolves had a higher unknown censoring hazard (Fig. 5).  

For illegal kill and other death the winter hazards were more than double the summer hazards.  

Adult and non-adult wolves had very similar hazards from unknown censoring, illegal kill, and 

other human mortality (Fig. 5).  Adult wolves had double the hazard from other death compared 

to non-adult wolves.  Probability of mortality from illegal killing was highest in the early 1980s 

and has increased again since 2000 (Fig. 6).  Probability of other human mortality has increased 
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since the mid-1990s.  Probability of other death mortality (mostly natural mortality) peaked in 

the early 1980s and again in the early 2000s.  Since the mid-2000s probability of other death has 

been on the decline (Fig. 6).   On average, we estimated natural mortality as < 12% (range: 3 – 

26%) per year (the other death category also contains unknown mortality), with natural mortality 

occurring in winter twice that of summer (Fig. 6).  On average, we estimated that mortality due 

to illegal killing was 10% annually (range: 2 – 25%) with four times the amount of illegal killing 

in winter than summer.  On average, we estimated mortality due to other human causes was 5% 

annually (range: 1 – 12%) with little difference by season (Fig. 6).  

We estimated the overall average annual survival rate for average habitat quality for 

radio-collared wolves in Wisconsin as 0.740 (SD = 0.013).  Average annual survival for adult 

wolves was 0.738 with 16% higher survival in summer (0.838) than in winter (0.673).  Average 

annual survival for non-adults was < 1% lower than adult survival (Fig. 6).  A 10% increase in 

habitat quality increased average annual survival by 2.1% (Mean = 0.761, SD = 0.013).   

Estimated average annual survival for average habitat quality classes from Mladenoff et 

al. (2009) ranged from 0.503 (SD = 0.065) for the 0 – 0.1 habitat probability class to 0.771 (SD = 

0.015) for the 0.95 – 1 habitat probability class (Fig. 7).  Overall, annual survival was lowest in 

the early 1980s just as wolves were beginning to recolonize.  The highest survival years were in 

the mid-1990s as the wolf population was entering a sustained growth phase.  Since the mid-

1990s survival has been slowly decreasing in a pattern that is consistent with density-dependent 

survival (Fig. 7).  Using the average habitat quality value by WHZ, the estimated average annual 

survival was very similar and highest in WHZs 1 and 2 (Fig. 8).  Compared to WHZs 1 and 2 we 

estimated 5% lower survival in WHZ 3 and 9% lower survival in WHZs 4 and 5 (Fig. 8).  WHZ 

6 had the lowest estimated annual survival of any WHZ (Mean = 0.500, SD = 0.066). 
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Discussion 

Our survival analysis for radio-collared wolves from 1980 – 2013 quantified the cause-

specific hazards that radio-collared wolves experienced, the relationship between survival and 

habitat quality, and an estimate for misclassified dead wolves.  We found that radio-collared 

wolves in Wisconsin had average annual survival of 74% and there were large differences in 

survival by season, year, and for different locations in Wisconsin.  

Our survival estimates are very similar to previous estimates of wolf survival in 

Wisconsin generated at different points in time with the same radio-telemetry data.  For 1986 – 

1991, Wydeven et al. (1995) estimated average annual survival as 82% while the wolf population 

was starting to expand.  On average, our analysis estimated annual survival of 82.8% during this 

same period.  During 1979 – 2003, Wydeven et al. (2009) estimated average annual survival as 

75% for adults and yearlings, and our estimated average annual survival for 1981 – 2003 was 

75.6% (we did not estimate survival prior to 1981).  Correspondence between previous estimates 

of survival and estimates of survival with a different approach suggests that our novel approach 

to survival analysis is reasonable.    

We took a novel approach to estimating wolf survival by modeling the endpoints without 

assuming independent censoring.  To model the endpoints it was necessary to split the model 

into a portion for the cause-specific probabilities of different events and a portion for the overall 

endpoint hazard.  This framework has many benefits.  First, it allowed us to include auxiliary 

information and to estimate an amount of misclassified death events.  In more typical approaches 

to survival analysis we would have assumed that all the radio-collared wolves that were lost to 

follow-up were not dead at the time of last observation and we would have over-estimated the 

annual survival.  Second, it is possible to include separate covariates in each portion of the 
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model, and the covariates are estimated independently for each portion.  We might assume that 

different circumstances would affect whether an endpoint having occurred (hazard) relative to 

the discrete cause associated with the event (cause-specific probability).  Finally, the split model 

allowed us to incorporate a time spline separately for the hazard and the endpoint probabilities.  

This time spline was easy to integrate and was very informative for visualizing how the hazard, 

the endpoint probabilities, and the cause-specific hazards changed over the three decades of wolf 

recovery. 

Higher hazards for wolves in winter than summer were mostly due to higher illegal 

killing during winter. This phenomenon likely relates to the fact that the winter period overlaps 

with Wisconsin’s big game hunting seasons when people are afield with weapons, and the 

enhanced visibility of wolves during winter because of snow cover and reduced vegetative cover.  

This finding corresponded to our analysis of wolf carcasses where we found that carcasses with 

illegal kill and natural mortality causes were more common in winter than summer (Chapter 1).   

However, in our survival analysis we did not detect higher other human-caused mortality in 

summer than winter contrary to the findings in the analysis from wolf carcasses (Chapter 1).  

The negligible difference in survival rates for adults compared to yearlings and pups (> 4 

months old) is corroborated by similar findings (Wydeven et al. 2009).  The unknown censoring 

hazard rate was higher for yearlings and pups than adults.  Our auxiliary information informed 

the adult censoring rate, and assumed the same correction factor for adults, yearlings, and pups.  

There may be higher rates of non-independent censoring in yearlings and pups that we were not 

able to detect in this analysis.  Our sample of yearlings and pups was small (22%) compared to 

the number of radio-collared adults and we are more confident about our inferences from radio-

collared adults. 
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Incorporating average habitat quality for WHZs, enabled us to estimate annual survival 

rates by WHZ.  WHZs 1 and 2 had higher estimated annual survival rates than the other WHZs 

because of the higher average habitat quality values in these northernmost WHZs (Mladenoff et 

al. 2009).  We estimated the annual survival rate in WHZ 5 as 10% lower than the survival in 

WHZs 1 and 2.  However, wolves in the central forest region (WHZ 5) appear to be doing well.  

There were only 12 wolves in 4 packs in the central forest region in 1994 – 1995 and in 2011 – 

2012 the WDNR estimated 127 wolves in 32 packs in the central forest region.  The central 

forest region does have higher road density and higher amounts of agriculture than the northern 

forest region, hence the lower average habitat quality value from WHZ 5. 

Habitat quality had a substantial effect on annual wolf survival.  To estimate habitat 

quality, Mladenoff et al. (1995, 1999, 2009) fit a logistic model of actual wolf pack territories 

and randomly-generated non-pack territories explained by environmental variables summarized 

within territories.  An increase in habitat quality decreased the probability that a radio-collared 

wolf would experience its last radio-collared location and decreased the probability that its last 

location was a death location from human causes.  Therefore, radio-collared wolves were 

relatively more likely to die from natural mortality and be censored in areas with a higher habitat 

quality.  This suggests source-sink dynamics (Pulliam and Danielson 1991) because many of the 

reasons for censoring (dispersal, survival beyond the life of the collar, survival to the end of the 

study) are likely to be associated with wolves living in established high quality territories where 

mortality risks are smaller and the probability of living beyond the battery life of a telemetry 

collar is higher.     

We provide the first estimate of non-independent censoring for radio-collared wolves in 

Wisconsin.  We estimate that there were 33 (95% credible interval: 5 – 63) more radio-collared 



75 

 

wolves that died in 1980 – 2013 than were detected.  Our correction factor only decreased the 

average annual survival rate by 1%, even though there was evidence of 19% missing mortality in 

some years.  We estimated a single correction factor across all years even though there were 

notable differences for different periods in wolf recovery (Stenglein et al., in review).  In 1980 – 

1995 when the wolf population was just beginning to establish, there was on average 4% missing 

survival in the radio-collar data compared to the count data.  Therefore, in these first 15 years, 

our discrepancy was in the opposite direction than we would have expected, and the negative 

discrepancy in these years shrank the overall correction factor close to 0.  In 1996 – 2002 while 

the wolf population was increasing, we needed 3% more mortality in the radio-collared data to 

explain the growth rate, and since 2003, we estimate 4% missing mortality on average.  This 

time of more missing mortality was also when we began to see increases in annual illegal killing 

rates for wolves.  We suggest that the illegal killing rate could be 4% higher than we estimated.  

The period 2003 – 2013 was a time of political change for wolves and frustration with the 

process (Olson 2013).  Social science indicates that people living in wolf range increased their 

willingness to illegally kill a wolf during this time period (Browne-Nunez et al. 2012, Treves et 

al. 2013). 

On average, we estimated 15% annual human-caused mortality mostly due to illegal 

killing (68%).  Inter-annual variation was high and some years had > 10 times more human-

caused mortality compared to others, and on average 1 out of 10 wolves died from illegal killing.  

Average rate of annual human-caused mortality in our study is comparable to rates in wolf 

populations in northeastern Alberta (15%; Fuller and Keith 1980) and northwestern Minnesota 

(17%; Fritts and Mech 1981).  Similarly, we estimated average natural mortality rates of roughly 

12% per year and these also varied by a factor of 10 across years.  Our average rate of natural-
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caused mortality is comparable to wolf populations in south-central Alaska (9%; Ballard et al. 

1987) and northwestern Minnesota (11%; Fritts and Mech 1981).     

Highest rates of illegal killing occurred during the earliest years of wolf recovery (1981 – 

1984) and also coincided with the highest natural mortality rates compared to other years.  

Therefore, it is no surprise that the wolf population periodically experienced negative population 

growth during those years and sustained population increase did not occur until after 1986 

(Stenglein et al., unpublished data).  Perhaps more surprising is that the rate of illegal killing 

drastically declined until 2005, and there have been especially high rates of illegal killing since 

2010.  Since 2010, the wolf population has also had its highest rates of other human caused 

mortality (> 10% of the population per year) for total human-caused mortality rates in excess of 

25% per year.  These high rates of other human mortality from vehicle collisions and lethal 

control actions correspond to a time when there were > 800 wolves and high quality habitat was 

largely saturated (Mladenoff et al. 2009, Wydeven et al. 2009).  Also, since 2008, there has been 

a steady decrease in average annual survival.  Hence, increased mortality from human causes 

appears to be a driver of annual growth rates that are decelerating in density dependent fashion 

(Van Deelen 2009).  This could be an example of density dependence in survival if increasing 

illegal killings are an expression for reduced human tolerance of an increasing wolf population 

(Olson 2013) and increased rates of other human mortality are an outcome of more wolves being 

pushed into more marginal (higher human presence) areas where they are more likely to 

encounter heavily trafficked roads and livestock. 

The degree to which human-caused mortality, natural mortality, and their interacting 

effects (e.g. additive, compensatory, super-additive) control annual growth in wolf populations is 

controversial (Fuller et al. 2003, Adams et al. 2008, Creel and Rotella 2010, Gude et al. 2012), 
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and different ecological contexts may preclude identification of a general principle from meta-

analyses of trends from wolf populations across North America (Gude et al. 2012).  This is 

further complicated by the fact that different analytical approaches can yield contradictory 

conclusions (Appendix D). Our analysis using various analytical approaches (Appendix D) 

suggests that human-caused mortality is an important driver of population trend in Wisconsin.  

Recruitment is evidently not a compensatory mechanism (Gude et al. 2012) and variation in 

natural mortality is evidently incomplete as a compensatory mechanism and may in fact be 

additive or super-additive (Creel and Rotella 2010).  There was strong additivity of natural 

mortality to annual human-caused mortality rates up to 15% (Appendix D).  This pattern is quite 

different than the evidence for compensation in human-caused mortality rates < 29% from other 

North American wolf populations (Adams et al. 2008). 

The relationship between per capita growth and annual human-caused mortality 

demonstrates that the Wisconsin wolf population would stabilize at 22% annual human-caused 

mortality, and this is the same rate found by Fuller et al. (2003) from 19 North American wolf 

populations (Appendix D).  However, we have seen years of negative population growth when 

the annual mortality rate was as low as 19%.  In years of modern harvest, we estimated from our 

analysis that the wolf population has had 29% and 28% annual mortality in 2012 and 2013, with 

a 1% and 19% decrease in the wolf population size, respectively.  The average annual human-

caused mortality rate in the years prior to harvest was 14% (range: 3 – 26%), so we estimate a 

harvest rate of roughly 8% to maintain a stable wolf population, assuming simple additivity. 
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Table 1. Numbers of endpoints from five causes from adult and non-adult (yearlings and pups) 

wolves in summer (April – September) and winter (October – March) that were radio-collared 

and tracked in Wisconsin, USA from 1980 – 2013. 

Age Season Unknown 

censoring 

Known 

censoring 

Illegal kills Other 

human 

mortality 

Other 

mortality 

Adult Summer 63 20 13 29 28 

 Winter 71 44 49 18 52 

Non-adult Summer 8 3 2 1 6 

 Winter 52 12 16 4 8 

Total  194 79 80 52 94 

 

 

Table 2.  Mean (and 95% credible intervals) of posterior estimates with odds interpretation from 

a categorical model of the probabilities that an endpoint was from five causes for radio-collared 

wolves in Wisconsin, USA (1980 – 2013) relative to covariates season, age, and habitat quality. 

Baseline covariate values were: season = summer, age = adult (≥ 24 months), and habitat = mean 

habitat quality over all observations. 

Logit
1
 Intercept Non-adults Winter Habitat quality 

    ⁄  0.817 (0.140 - 

7.295) 

0.535 (0.235 - 

1.207) 

1.073 (0.569 - 

2.143) 

1.180 (0.225 - 

4.719) 

    ⁄  0.094 (0.020 - 

0.576) 

0.549 (0.265 - 

1.192) 
3.089 (1.493 - 

7.042) 

0.469 (0.080 - 

1.909) 

    ⁄  0.385 (0.110 - 

1.758) 

0.339 (0.101 - 

1.055) 
0.454 (0.207 - 

0.985) 

0.173 (0.028 - 

0.694) 

    ⁄  0.583 (0.123 - 

1.979) 
0.320 (0.148 - 

0.680) 

1.301 (0.700 - 

2.615) 

2.018 (0.321 - 

9.695) 

Bold type indicates that the odds ratio does not overlap 0. 
1
 endpoint cause: U = unknown censoring, K = known censoring, I = illegal kill, H = other 

human mortality, and O = other death. 

 

Table 3. Means, standard deviations (SD), hazard ratios, and 95% credible intervals of hazard 

ratios from posterior estimates for parameters in a discrete monthly hazard model for the 

endpoint of wolves in Wisconsin, USA (1980 – 2013). 

Parameter Mean SD Hazard ratio 95% CI 

Not adult 0.19 0.11 1.21 (0.97 – 1.50) 

Winter 0.70 0.10 2.01 (1.66 – 2.47) 

Habitat  -0.94 0.18 0.39  (0.27 – 0.56) 

Bold type indicates that the hazard ratio does not overlap 0. 
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Table 4. Definitions of terms from cause-specific mortality analysis of Wisconsin’s wolf 

population. 

Term Definition 

Accurate classification The true cause of endpoint.  For some unknown censoring 

endpoints, the accurate classification may actually be a 

mortality endpoint. 

Augmented model The model that includes auxiliary data to inform the 

misclassification parameters. 

Auxiliary data Population count data that is used to make the 

misclassification parameters identifiable.  

Cause-specific endpoint hazard The probability of experiencing an endpoint from one of five 

causes in some month.    

Cause-specific mortality hazard The probability of experiencing a mortality endpoint from one 

of three mortality causes in some month. 

Endpoint The last location record for a radio-collared wolf. 

Error-prone classification The cause of endpoint that was observed.  The error-prone 

classification pertains to the unknown censoring cause of 

endpoint. 

Hazard The probability of experiencing an endpoint in some month. 

Illegal kill Cause of endpoint from mortality due to illegal shooting, 

trapping, or poisoning. 

Known censoring Cause of endpoint from surviving until the end of study or 

loss-to-follow-up during the study and found dead 

sometime after its endpoint. 

Other death Cause of endpoint from mortality due to other causes, 

including disease, intraspecific strife, and unknown causes. 

Other human mortality Cause of endpoint from mortality due to human causes 

besides illegal killing, including vehicle collision, lethal 

control action, and harvest. 

Overall endpoint hazard The probability of experiencing an endpoint in some month. 

Overall mortality hazard The probability of experiencing a mortality endpoint in some 

month. 

Unaugmented model The model that does not include auxiliary data. 

Unknown censoring Cause of endpoint from censoring due to loss-to-follow-up 

from unknown causes.  The cause of endpoint category 

with possible misclassification. 
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Figure 1. Maps of Wisconsin, USA showing: A) kernel density of radio-collared wolf locations 

(1980 – 2013), and B) habitat quality class probability from Mladenoff et al. (2009) with six wolf 

harvest zones (WHZ) labeled as 1 – 6 that was used as the habitat quality covariate in the model.   
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Figure 2. The estimated observed probabilities of endpoints from five different causes for adult 

and not adult wolves (i.e., yearlings and pups) in summer (April – September) and winter 

(October – March) from 1980 – 2013 in Wisconsin, USA, modeled from radio-collared data 

alone and when modeled using auxiliary data from the annual population counts. 
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Figure 3. Monthly hazard for endpoints for adult and non-adult (yearlings and pups) radio-

collared wolves in summer (April – September) and winter (October – March) in Wisconsin, 

USA (1980 – 2013).    
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Figure 4. Mean monthly mortality hazards from observed mortality events from radio-telemetry 

data (thick black line) and from population counts (thin black line) with a 95% credible interval 

(gray polygon) for the Wisconsin wolf population (1980 – 2013).   
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Figure 5. Cause-specific discrete monthly hazards for five enpoint causes for adult and non-adult 

(yearlings, pups) wolves in summer (April – September) and winter (October – March) in 

Wisconsin, USA (1980 – 2013).   
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Figure 6. Estimated annual cause-specific mortality rates for adult and non-adult (i.e., yearlings 

and pups) wolves in summer (April – September) and winter (October – March) in Wisconsin, 

USA (1980 – 2013). 
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Figure 7. Predicted annual survival rates for adult radio-collared wolves (1981 – 2013) in 

Wisconsin, USA for each habitat quality class from Mladenoff et al. (2009). 
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Figure 8. Estimated average annual survival for radio-collared wolves in each wolf harvest zone 

(WHZ) based on the average habitat quality in each WHZ in Wisconsin, USA. 
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Appendix A. Population count model for auxiliary monthly hazard data. 

We estimated annual survival rate,   , from wolf population count data collected by 

WDNR (1980 – 2009; Wydeven et al. 2009).  Our data comprised a time series of annual 

population counts,      , and annual estimates of new recruits,      , for year   with   

        and   was the total number of years (Fig. A.1, Fig. A.2).   

We took the mean of the range in population counts in year   as      .  We assumed 

that the range in counts each year represented a 95% confidence interval for counts and therefore 

calculated measurement error as ¼ the difference between the high and low count and took the 

average among the years as   (i.e., “range rule”; Triola 2010).  We modeled the population 

count,      , in a given year   using a log-normal distribution.  That is, 

                (     ), where    was the true population size in year   and   was the 

standard deviation, both on the log scale (Liberg et al. 2012).     

We took the mean in the range of the count for the number of new recruits each year 

as      .  We assumed the annual average count of new recruits          born into the 

population and counted on January 1 of year     was represented by a binomial distribution 

                            with recruitment rate,   , from the population count in year  , 

     , where    was the true proportion of new recruits that were born into the population and 

survived until the annual count of         for             (Fig. A.1).  In the normal 

approximation to the binomial, we modeled                              
  , where        

          and                  (    )     were the mean and standard deviation 

of the normal distribution.  We let                which was equivalent to a              

distribution and both were vague priors on the rate   .   
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In the lognormal model for the population counts, we assumed that the mean process, 

    , was equal to the log of the population count       in the previous year   multiplied by 

the sum of a recruitment rate (  ) and a survival rate (  ):                 (     )  for 

           .  We assumed a closed population where the immigration rate and emigration 

rate sum to zero and are not included (Gotelli 1995).  Annual survival rate    was given a vague, 

uniform prior:                  .  For years 2010 – 2013 when recruitment data were not 

collected, we took the average annual survival rate from the previous years:  ̅   
∑   

 
   

 
.     

We transformed the annual survival rate into a monthly discrete hazard rate,       , 

where                      (Klein and Moeschberger 2003).  We replicated each        

twelve times to represent months and created a vector         where   indexed month and 

          and   is the total number of months.  The vector         was used as auxiliary 

data in the wolf survival model.  We used a Gibbs sampler from program JAGS (Plummer 2003) 

with the package ‘rjags’ (Plummer 2011) in program R (R developement Core Team 2013) to 

sample the posteriors of   .  We ran multiple chains for 10,000 iterations of burn-in, and an 

additional 10,000 to sample the posteriors.   

From our population count model, annual recruitment rate ranged from 0.218 – 0.600 

with an average annual recruitment rate of 0.376 (Fig. A.3).  Annual survival rate ranged from 

0.565 – 0.935 with an average annual survival rate of 0.756.  Both recruitment and survival were 

more variable and less precise during 1980 – 1992 compared to the years since 1992 (Fig. A.3).  

Monthly discrete hazard rates ranged from 0.006 – 0.049, and average monthly discrete hazard 

was 0.025.      
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Figure A.1. Timeline of data collection (solid boxes) for wolf population counts (    ) and wolf 

pup counts (    ) for year   that were used in a population count model to estimate the true 

annual population size  , annual recruitment rate  , and annual survival rate   for year  .     
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Figure A.2. Annual estimated wolf population size and number of wolf pups (recruitment) in 

1980 – 2009 in Wisconsin, USA (Wydeven et al. 2009). 

 

     

  



96 

 

 

Figure A.3. Posterior means and 95% credible intervals of annual survival and recruitment rates 

from a population count model of wolves in Wisconsin, USA (1980 – 2009). 

  



97 

 

Appendix B. Approach to incorporating misclassification in endpoint causes and the relationship 

to sensitivity and specificity. 

 We took a generalized sensitivity and specificity approach to estimate misclassification 

for causes of the endpoints for radio-collared wolves.  In this appendix, we give some 

background on sensitivity and specificity, its application to our study, and work through some 

examples for interpretation of estimated parameters.   

 In the medical field, sensitivity and specificity are statistics that can help doctors 

understand performance of binary diagnostic tests with respect to the true status of infection or 

disease (Altman and Bland 1994).  More generally, sensitivity and specificity are statistical 

quantities that measure the performance of a classification test.  We will first use a disease 

diagnosis as an example to illustrate notation and structure of a simple classification test.  We let 

  represent the true disease status such that     is disease and     is healthy.  We let   

represent the observed and potentially error-prone test for the disease such that     is a 

positive test result and     is a negative test result for the disease.  There are four possible 

outcomes in the classification test (Fig. B.1): 

1. True positives         .  True positives occur when there is a positive test for the 

disease and the disease is actually present.  True positives are the numerator in the 

statistic for test sensitivity. 

2. False positives         .  False positives occur when there is a positive test for the 

disease and the disease is actually absent. 

3. False negatives         .  False negatives occur when there is a negative test for 

the disease and the disease is actually present. 
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4. True negatives         .  True negatives occur when there is a negative test for the 

disease and the disease is actually absent.  True negatives are the numerator in the 

estimate for test specificity. 

From these outcomes, we can calculate test sensitivity and specificity.  Sensitivity (        

    is the proportion of diseased individuals that are correctly identified as diseased by the 

diagnostic test:             
              

                              
, and specificity (            is 

the proportion of healthy individuals that are correctly identified as not diseased by the 

diagnostic test:             
              

                               
 (Altman and Bland 1994, Speybroeck 

et al. 2013).  A perfect test would be completely sensitive and specific (            

             ).   

Now that we set the stage with a disease example, we transition into an example of 

classification that is relevant in our study of endpoints for wolves.  We define the endpoint 

categories of death and not death (i.e. censored).  With the same notation, we define the true 

endpoint status such that     was a true death and     was definitely not a death.  We let   

represent the observed and potentially error-prone categorization of the endpoint such that     

was an endpoint observed as death and     was an endpoint not observed as death.  In this 

case, we will not have observations in all of the 4 categories (Fig. B.2).  We fixed the false 

positives to 0 because there was no situation where a wolf that was truly censored (and definitely 

not dead) would actually be categorized as dead.  Therefore, all wolves that were actually 

censored were observed as censored and              
              

                
  .  The false 

negatives were the true dead wolves that were observed as censored, and this category was our 

primary interest.  We defined the parameter   as the probability that a wolf that was actually 



99 

 

dead was observed as censored (          ).  The more common test sensitivity was then 

   .  

In our study, we defined five endpoint categories and therefore extended the binary 

classification into a     classification matrix (Fig. B.3).  However, we made assumptions 

about many of the classification categories and kept a single parameter  .  We labeled our causes 

for the endpoint as 1 = unknown censoring, 2 = known censoring, 3 = illegal kill, 4 = other 

human mortality, and 5 = other mortality.  We present the classification matrix cells as 

proportions of the total number of true events from each cause, and each row summed to 1.  We 

assumed that all true censoring events (both known and unknown censoring) were observed as 

censoring events (             and             ).  We treated all of the true 

known mortality causes        ) as a single category because we were not able to 

differentiate which of the true known mortality causes were misclassified.  In other words, we 

assumed that all true known mortality causes had the same proportion of misclassification. Next, 

we assumed that misclassification only occurred because true known mortality causes were 

observed as unknown censoring (i.e., wolves that disappear from follow-up).  We let   be the 

probability that we observed unknown censoring given that the event was actually a known 

mortality cause (                                  ).  Finally,     

was the probability of observing a known mortality cause given that the event was actually that 

known mortality cause (                                     . 
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Figure B.1. Diagram of sensitivity and specificity estimates from a binary diagnostic test. 
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Figure B.2. Diagram of generalized sensitivity and specificity estimates for a misclassification 

problem of wolf endpoints due death or censoring. 
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Figure B.3.  Generalized sensitivity and specificity matrix relating the classification of observed 

death status from 5 causes compared to actual death status from 5 causes for wolves in 

Wisconsin, USA.   
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Appendix C. Low-rank thin-plate splines to model a smooth function for time. 

We used a nonparametric function for time to capture how both cause-specific endpoint 

probabilities and monthly hazards changed in time.  By using a spline for time, we let the data 

choose the shape of each function with respect to time instead of specifying a functional shape 

for time through a parametric model.  We chose to use penalized splines, specifically low-rank 

thin-plate splines because of their good mixing properties in the Markov Chain Monte Carlo 

chains of a Bayesian analysis (Ruppert et al. 2003, Crainiceanu et al. 2007).  For the notation and 

implementation of low-rank thin-plate splines in our analysis, we relied heavily on the methods, 

notation, and R code from Crainiceanu et al. (2007).  Implementation of the spline is very similar 

in the probability and hazard pieces of our model, but we present them both because they have 

different dimensions and notation.   

Hazard function 

 The linear predictor for the hazard function was:                             

      .  The        portion of the linear predictor for observation   is where a smooth function of 

time was incorporated into the discrete hazard function by way of a low-rank thin-plate spline 

(Ruppert et al. 2003, Crainiceanu et al. 2007). We chose a number of knots,   with          

and    is the total number of knots.  We chose to use 20 knots (    ) to ensure that there was 

enough flexibility without having too many parameters to estimate in the spline.  We let the 

covariate      represent time for observation  , and we let    represent the sample quantile of      

corresponding to the 
 

   
  probability.  Next, we calculated    which was a        matrix with 

row    equal to the cube of the absolute difference between the time at location  ,     , and   : 

   {|       |
 
 |       |

 
   |       |

 
}.  We defined a new matrix    to have 

dimensions        and let row   be the cube of the absolute difference in time between each 
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knot,   :     {       
         

           
 }.  .  Next, we let       

    
 so that the 

matrix     penalized the coefficients of |       |
 
 in the matrix multiplication and resulted in 

       matrix  .  We defined a new vector   of length    to be vague, random normal variables 

with mean equal to 0 and standard deviation equal to       and                       .  We 

let     
   

  where   is a vector of random parameters of length  ,               
 .   

Cause-specific endpoint probabilities 

 In the cause-specific endpoint probability portion of the model, the linear predictor was 

                       .  The          portion of the linear predictor for observation   is 

where we incorporated a smooth function of time into the cause-specific endpoint probabilities 

with the spline.  We let the covariate      represent time for observation  .  We chose a number 

of knots,   with          and    is the total number of knots, and we let    represent the 

sample quantile of      corresponding to the 
 

   
  probability.  Next, we calculated    as an 

       matrix with row    equal to the cube of the absolute difference between the time at 

location  ,      , and   :     {|       |
 
 |       |

 
   |       |

 
}.  We defined a 

new matrix    to have dimensions        and let row   be the cube of the absolute difference in 

time between each knot,   :     {       
         

           
 }.  Next, we let   

    
    

 so that the matrix     penalized the coefficients of |       |
 
 in the matrix 

multiplication and resulted in        matrix  .  We defined a new vector   of length    to be 

vague, random normal variables with mean equal to 0 and standard deviation equal to       and 

                      .  We let     
   

  where   is a vector of random parameters of 

length  ,               
 .   
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Appendix D. Mortality rates affecting population growth. 

Varying compensation in cause-specific mortality has been documented in wolf 

populations (Mech 2001).  When human-caused mortality was low, as in Minnesota and Denali 

National Park, Alaska, ~10% of the population was killed because of conflicts with other wolves 

(Mech 1977, Mech et al. 1998).  In contrast, areas in Alaska where wolf hunting is used for 

management, a negligible proportion of wolves were killed by other wolves, indicating a 

compensatory mortality mechanism (Ballard et al. 1987).  Wolves compensate for hunting 

pressure by moving on the landscape through dispersal, emigration, and immigration. 

Recruitment may or may not have a significant role (Adams et al. 2008, Gude et al. 2012).   

Recent research into whether human-caused mortality is compensatory or additive with 

other causes of mortality for a wolf population is controversial, and this has been identified as an 

important research need in wolf conservation (Vucetich and Peterson 2004).  Several analytical 

approaches have been put forward to try and understand the relationship between mortality 

sources and population growth.  Here, we summarize four different approaches and apply them 

to wolf data for Wisconsin.  For all analyses, we used the midpoint of the population estimates 

for wolves in Wisconsin from 1980 – 2013 (Wydeven et al. 2009) and the survival and cause-

specific mortality rates from Chapter 2. 

Approach from Fuller et al. (2003) 

Fuller et al. (2003) summarized 19 wolf studies (The Isle Royal study was divided into 2 

subsets for a total of 20 data points) and found that, on average, a wolf population would 

stabilize with an annual mortality rate of 0.34 (SE = 0.06) or a human-caused mortality rate of 

0.22 (SE = 0.08).  We fit the linear relationship of per capita population growth to annual 

mortality rate and per capita population growth to human-caused mortality rate (Fig. D.1).  We 
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found that per capita population growth decreased with annual mortality rate (          

               ; Adjusted R
2
 = 0.803) and decreased with human-caused mortality rate 

(                         ; Adjusted R
2
 = 0.543).  According to this linear 

relationship, we would estimate that Wisconsin’s wolf population would stabilize at 36.1% 

annual mortality and 22.1% annual human-caused mortality.  These are very similar to the total 

mortality and human-caused mortality rates of 34% and 22% from Fuller et al. (2003) who 

analyzed data from the 19 North American studies.     

Approach from Adams et al. (2008) 

Adams et al. (2008) revisited the analyses of Fuller et al. (2003) and separated the 

population trends from the 19 North American studies into 41 different sub-trends based on 

notable changes in population trend or management.  They left out 3 outliers and fit the 

relationship between per capita growth rate and annual human-caused mortality.  They found that 

a quadratic was a better fit than a linear function, and reasoned that population trend was not 

correlated with human-caused mortality rates that were less than 29% annually.  Also, 

populations grew an average of 10% per year when annual human-caused mortality rates were < 

29%.  Their conclusion was that harvest loss ≤ 29% annually was compensated for by 

adjustments in dispersal, and at this level there was no relationship between natural mortality and 

human-caused mortality that would suggest compensation from natural mortality (Adams et al. 

2008).   

  We fit the relationship of per capita population growth and annual human-caused 

mortality with a quadratic function and compared this model fit compared to the linear model 

based on Akaike’s Information Criterion (AIC).  We also fit the relationship of natural mortality 

to human-caused mortality to consider whether there was evidence of compensation from natural 
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mortality sources.  We found that the quadratic relationship was a better model than the line 

(                                  ; Fig. D.2).  The formula for the quadratic function 

was                                           , and the fit was concave versus 

the convex relationship found by Adams et al. (2008).  The rate of human-caused mortality that 

would lead to a stable population from the quadratic fit was 0.209.  For Wisconsin’s wolf 

population, it appears that there is strong additivity in natural mortality for rates of human-

caused mortality < 0.15.  After about 15% annual human-caused mortality per year, the 

relationship is much less clear (Fig. D.2).  It is clear, however, that the Wisconsin wolf 

population had quite a different relationship between per capita growth and human-caused 

mortality than the findings of Adams et al. (2008). 

Approach from Creel and Rotella (2010) 

 Creel and Rotella (2010) noted that Fuller et al.’s (2003) analysis actually yielded 

evidence that human harvest was additive to other mortality sources (      ⁄  = 0.91).  A 

linear regression of the total mortality on human-caused mortality rate gives a slope,  , and an 

intercept,  .  The formula       ⁄  yields a value that can be interpreted as evidence for full 

compensation (0), full additivity (1), partial additivity (between 0 and 1), and super-additivity (> 

1; Williams et al. 2002, Lebreton 2005).  Using the same 19 studies as Fuller et al. (2003) and an 

additional 29 population estimates from wolves in the Northern Rocky Mountains, Creel and 

Rotella (2010) documented super-additive mortality.  Also, the model-averaged results from the 

relationship of population growth rate and human off-take indicated that wolves in the Northern 

Rocky Mountains had a stable to increasing population growth up to 22.4% annual human-

caused mortality and wolves in other areas of North America had stable to increasing population 

growth up to 24.5% annual human caused mortality (Creel and Rotella 2010). 
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 We fit a line to the total mortality rate versus human-caused mortality rate from our data 

and calculated       ⁄ .  We found that the linear relationship was                 

         , and that       ⁄       (Fig. D.3).  The value was very similar to the value of 

1.34 that Creel and Rotella (2010) found for wolves in the Northern Rocky Mountain region.  

These results suggest that human-caused mortality in the Wisconsin wolf population is additive 

or super-additive.   

Approach of Gude et al. (2012) 

 Gude et al. (2012) noticed that Creel and Rotella (2010) analyzed the Northern Rocky 

Mountain wolf population dataset without accounting for differences in monitoring and without 

accounting for recruitment.  Therefore, Gude et al. (2012) conducted new analyses of these same 

data, while attempting to account for some of this extra variation.  For a predictor variable of per 

capita growth rate, the response variables in three competing models were: 1) human-caused 

mortality rate, 2) recruitment rate, and 3) human-caused mortality rate + recruitment rate.  They 

found that variation in both recruitment and human-caused mortality rate affected the population 

growth rate.   

 We fit the same models from Gude et al. (2012) and conducted model selection with 

AIC.  We restricted our analysis to the years 1981 – 2009 because the number of pups each 

winter was not estimated after 2009.  To calculate recruitment rate, we divided the average 

number of pups in year     by the average population size in year  , and took this to be the per 

capita recruitment rate for year  .  We found that per capita growth rate was best explained by 

the human-caused mortality rate alone (           ; Fig. D.4).  Recruitment rate had a very 

weak  relationship with per capita growth rate (Adjusted R
2
 = -0.031) and AIC was much higher 

(           ; Fig. D.4).  The model with both human-caused mortality and recruitment rate 
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was no better than the model with human-caused mortality rate alone (           ).  We 

conclude that the growth rate for wolves in Wisconsin is much more affected by the human-

caused mortality rate than by the recruitment rate.  This is a different finding than for wolves in 

the Northern Rocky Mountains where recruitment and human-caused mortality were both 

contributors to the growth rate (Gude et al. 2012). 
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Figure D.1. Plots of per capita growth (pgr) in 1981 – 2013 versus total mortality rate and the 

human-caused mortality for wolves in Wisconsin, USA. (Approach of Fuller et al. 2003) 
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Figure D.2. Plots of per capita growth (pgr) versus human-caused mortality with a linear and a 

quadratic fit, and of natural mortality versus human-caused mortality with a vertical dashed line 

for the rate of human-caused mortality that would leads to 0 population growth from the 

quadratic fit for wolves in Wisconsin, USA from 1981 – 2013.  (Approach of Adams et al. 2008) 
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Figure D.3.  Relationship of total mortality and human-caused mortality for wolves in 

Wisconsin, USA (1981 – 2013). (Approach of Creel and Rotella 2010) 
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Figure D.4. Plot of per capita growth related to human-caused mortality rate and recruitment rate 

for wolves in Wisconsin, USA from 1981 – 2009. (Approach of Gude et al. 2012) 
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Appendix E. Model for use with JAGS. 

model { 

 

### cause-specific endpoint probability part, pj 

for (i in 1:n){ 

for( k in 1:K ) {  

 eta[i,k] <- base1[i,k] + beta1.X1[i,k]  

 base1[i,k] <- beta1[1,k] + beta1[2,k]*X1[i,2] + b1.Z1[i,k] 

 beta1.X1[i,k] <- beta1[3,k]*X1[i,3] + beta1[4,k]*X1[i,4] + beta1[5,k]*X1[i,5]  

 b1.Z1[i,k] <- b1[k,1]*Z1[i,1]+b1[k,2]*Z1[i,2]+b1[k,3]*Z1[i,3]+b1[k,4]*Z1[i,4] + 

b1[k,5]*Z1[i,5] + b1[k,6]*Z1[i,6] + b1[k,7]*Z1[i,7] + b1[k,8]*Z1[i,8] + 

b1[k,9]*Z1[i,9] + b1[k,10]*Z1[i,10] + b1[k,11]*Z1[i,11] + b1[k,12]*Z1[i,12] + 

b1[k,13]*Z1[i,13] + b1[k,14]*Z1[i,14] + b1[k,15]*Z1[i,15] + b1[k,16]*Z1[i,16] + 

b1[k,17]*Z1[i,17] + b1[k,18]*Z1[i,18] + b1[k,19]*Z1[i,19] + b1[k,20]*Z1[i,20] 

 expeta[i,k] <- exp(eta[i,k]) 

 # probabilities (link function) 

 p[i,k] <- expeta[i,k]/sum(expeta[i,1:K]) 

} 

 # stochastic part 

 cause[i] ~ dcat(pstar[i,1:K])  

} 

 # misclassification 

for (i in 1:n) { 

for (e in 1:K){ 

pstar[i,e] <- sum(miss[e,1:K]*p[i,1:K]) 

}} 

 

for (j in 1:P){  

 # coefficients for the baseline category are constrained to zero 

 beta1[j,1] <- 0.0  

 # independent normal low information priors  

 for (k in 2:K){ beta1[j,k] ~ dnorm(0.0, 0.0001) }  

} 

for (m in 1:20) {b1[1,m] <- 0}  

for (k in 2:K) { 

for (m in 1:20) { 

 b1[k,m] ~ dnorm(0,taub1) 

} 

} 

taub1 ~ dgamma(0.001,0.001) 

sigmab1 <- 1/sqrt(taub1) 

 

### the hazard part, h 

# i for records, and N for number of records 

for (i in 1:N) {  

 outcome[i] ~ dbern(mu[i]) 

 cloglog(mu[i]) <- beta.X[i] + base.beta.X[i] 

 base.beta.X[i] <- gm + beta0[year[i]] + beta[2]*X[i,2] + b.Z[i] 

 beta.X[i] <- beta[3]*X[i,3] + beta[4]*X[i,4] + beta[5]*X[i,5]  

 b.Z[i] <- b[1]*Z[i,1]+b[2]*Z[i,2]+b[3]*Z[i,3]+b[4]*Z[i,4] + b[5]*Z[i,5] + b[6]*Z[i,6] 

+ b[7]*Z[i,7] + b[8]*Z[i,8] + b[9]*Z[i,9] + b[10]*Z[i,10] + b[11]*Z[i,11] + 

b[12]*Z[i,12] + b[13]*Z[i,13] + b[14]*Z[i,14] + b[15]*Z[i,15] + b[16]*Z[i,16] + 

b[17]*Z[i,17] + b[18]*Z[i,18] + b[19]*Z[i,19] + b[20]*Z[i,20] 

 hazard[i] <- -log(1-mu[i]) 

} 

for (k in 1:20) {b[k] ~ dnorm(0,taub)} 

taub ~ dgamma(0.001,0.001) 

sigmab <- 1/sqrt(taub) 

for (i in 2:P) { 

 beta[i] ~ dnorm(0,0.0001) 

 haz.ratio[i] <- exp(beta[i])} 
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for (i in 2:34) { 

 beta0[i] ~ dnorm(0,0.0001) 

} 

gm ~ dnorm(0,0.0001) 

beta0[1] <- 0 

 

### for prediction of pj(t) and h(t) 

for (i in 1:T) { 

# for pj(t) 

for (k in 1:K){ 

eta2[i,k] <- beta1.X2[i,k] + base2[i,k] 

base2[i,k] <- beta1[1,k] + beta1[2,k]*X2[i,2] + b1.Z2[i,k] 

base.seasonave[i,k] <- beta1[1,k] + beta1[2,k]*X2[i,2] + b1.Z2[i,k] + (beta1[4,k]/2) 

beta1.X2[i,k] <- beta1[3,k]*X2[i,3] + beta1[4,k]*X2[i,4] + beta1[5,k]*mean.value 

b1.Z2[i,k] <- b1[k,1]*Z2[i,1]+b1[k,2]*Z2[i,2]+b1[k,3]*Z2[i,3]+b1[k,4]*Z2[i,4] + 

b1[k,5]*Z2[i,5] + b1[k,6]*Z2[i,6] + b1[k,7]*Z2[i,7] + b1[k,8]*Z2[i,8] + 

b1[k,9]*Z2[i,9] + b1[k,10]*Z2[i,10] + b1[k,11]*Z2[i,11] + b1[k,12]*Z2[i,12] + 

b1[k,13]*Z2[i,13] + b1[k,14]*Z2[i,14] + b1[k,15]*Z2[i,15] + b1[k,16]*Z2[i,16] + 

b1[k,17]*Z2[i,17] + b1[k,18]*Z2[i,18] + b1[k,19]*Z2[i,19] + b1[k,20]*Z2[i,20] 

expeta2.base.seasonave[i,k]<-exp(base.seasonave[i,k]) 

expeta2[i,k]<-exp(eta2[i,k]) 

# probabilities (link function) 

p.pred[i,k] <- expeta2[i,k]/sum(expeta2[i,1:K]) 

p.base.seasonave[i,k] <- 

expeta2.base.seasonave[i,k]/sum(expeta2.base.seasonave[i,1:K]) 

} 

 

# for h(t) 

cloglog(mu2[i]) <- base.beta.X3[i] + beta.X3[i] 

base.beta.X3[i] <- gm + beta0[year2[i]] + beta[2]*X3[i,2] + b.Z3[i] 

beta.X3[i] <- beta[3]*X3[i,3] + beta[4]*X3[i,4] + beta[5]*mean.value 

cloglog(h.base.seasonave[i]) <- gm + beta0[year2[i]] + beta[2]*X3[i,2] + b.Z3[i] + 

(beta[4]/2) 

b.Z3[i] <- b[1]*Z3[i,1]+b[2]*Z3[i,2]+b[3]*Z3[i,3]+b[4]*Z3[i,4] + b[5]*Z3[i,5] + 

b[6]*Z3[i,6] + b[7]*Z3[i,7] + b[8]*Z3[i,8] + b[9]*Z3[i,9] + b[10]*Z3[i,10] + 

b[11]*Z3[i,11] + b[12]*Z3[i,12] + b[13]*Z3[i,13] + b[14]*Z3[i,14] + b[15]*Z3[i,15] + 

b[16]*Z3[i,16] + b[17]*Z3[i,17] + b[18]*Z3[i,18] + b[19]*Z3[i,19] + b[20]*Z3[i,20] 

 hazard.pred[i] <- -log(1-mu2[i]) 

 hazard.base.seasonave[i] <- -log(1-h.base.seasonave[i]) 

} 

 

### hj(t) part. Cause-specific hazard 

for (i in 1:T) { 

 p.interesting[i] <- sum(p.base.seasonave[i,3:5]) 

 haz.interesting[i] <- p.interesting[i]*hazard.base.seasonave[i] 

 log.haz.auxiliary[i] ~ dnorm(log(haz.interesting[i]),tau.auxiliary)  

} 

 

### predict survival 

for (i in 1:T) { 

 p.mort[i] <- sum(p.pred[i,3:5]) 

 cause.haz[i] <- p.mort[i]*hazard.pred[i] 

} 

 

for (j in 1:4) { 

for (i in 1:33) { 

 annual.surv[i,j] <- exp(-sum(cause.haz[((i-1)*12+7+(j-1)*402):((i-1)*12+18+(j-

1)*402)])) 

} 

 mean.surv[j] <- mean(annual.surv[1:33,j]) 

} 

tot.surv <- (mean.surv[1]*153 + mean.surv[2]*234 + mean.surv[3]*20 + 

mean.surv[4]*92)/499 



116 

 

 

### misclassification matrix 

miss[1,1] <- 1 

miss[2,1] <- 0 

miss[3,1] <- 0 

miss[4,1] <- 0 

miss[5,1] <- 0 

 

miss[1,2] <- 0 

miss[2,2] <- 1 

miss[3,2] <- 0 

miss[4,2] <- 0 

miss[5,2] <- 0 

 

miss[1,3] <- phi 

miss[2,3] <- 0 

miss[3,3] <- 1 - phi 

miss[4,3] <- 0 

miss[5,3] <- 0 

 

miss[1,4] <- phi 

miss[2,4] <- 0 

miss[3,4] <- 0 

miss[4,4] <- 1 - phi 

miss[5,4] <- 0 

 

miss[1,5] <- phi 

miss[2,5] <- 0 

miss[3,5] <- 0 

miss[4,5] <- 0 

miss[5,5] <- 1 - phi 

 

phi ~ dunif(0,1) 

 

} 
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Chapter 3: An individual-based model for southern Lake Superior wolves: A tool to 

explore the effect of human-caused mortality on a landscape of risk 

Abstract 

Gray wolves (Canis lupus) have complex life-histories due, in part, to mating systems that 

depend on dominance hierarchies and a social structure linked to philopatric social groups 

known as packs.  In addition, mortality risk associated with interactions with humans vary 

spatially.  We developed an individual-based spatially-explicit (IBSE) model for the southern 

Lake Superior wolf population to better capture the life-history of wolves in a harvest model.  

Simulated wolves underwent an annual cycle of stage-dependent mate-finding, dispersal, 

reproduction, and aging on a simulated landscape reflecting spatially-explicit state and water 

boundaries, Ojibwe Indian reservation boundaries, wolf harvest zones, livestock depredation 

areas, and a spatial mortality risk map that scaled an individual’s probability of mortality to the 

influence of road density and percent of agriculture.  Additional mortality sources included 

recreational harvest and lethal control focused on areas of chronic livestock depredations.  We 

built, documented, and calibrated the IBSE model to the observed growth of the combined 

Wisconsin and Michigan wolf population.  We found that without harvest, the Wisconsin wolf 

population attained an average carrying capacity of 1242 wolves after 50 years and breeding 

pairs persisted for a mean 1.8 years.  We simulated six management scenarios with varying rates 

and timings of harvest and assessed effects on wolf populations in terms of numbers, pack sizes, 

age ratios, dispersal and immigration rates, and breeding pair tenures.  The simulated harvest 

with rates corresponding to the 2012 harvest in Wisconsin reduced the population 4% in the first 

year of harvest and stabilized the wolf population at about 600 wolves after 20 years of harvest.  

A 30% harvest rate across the simulation reduced the population by 65% after 20 years with 
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some simulated populations going extinct before 100 years.  In general, harvest increased the 

proportion of pups in the population and decreased breeding pair tenure.  Targeted lethal control 

was more effective than harvest for reducing the number of wolves near known livestock 

depredation sites.  This model facilitates prediction of important population patterns that is 

simultaneously dependent on complexities associated with life history and spatially structured 

mortality. 

Introduction 

During the last three decades, gray wolves recolonized the upper southern Lake Superior 

(SLS) region, USA from a source population in Minnesota.  Gray wolves reintroduced into 

central Idaho and Yellowstone National Park (Wyoming, USA) have expanded their range across 

the Rocky Mountain region into portions of Washington and Oregon (United States Fish and 

Wildlife Service et al. 2013).  Recovery has been so successful that both the Great Lakes and 

Rocky Mountain populations are now harvested.  Other pockets of habitat are now home to less 

established wolf populations.  Reintroduced Mexican wolves (Canis lupus baileyi) in the 

southwestern USA and red wolves (Canis rufus) in the southeastern USA each have populations 

around 100 individuals (United States Fish and Wildlife Service 2012, 2013).  The success of 

wolves in these different habitats demonstrates wolves’ ability to exist in human-dominated 

landscapes, especially when wolves are protected from heavy harvests associated with early 

eradication campaigns and poaching (Merrill 2000, Thiel et al. 2009).  Nevertheless, having 

humans and wolves sharing modern landscapes requires a thorough understanding of how active 

management, including harvest, affects population dynamics.   

Individual-based modeling is increasing in ecology to answer pragmatic questions and to 

explore ecological theories (Grimm and Railsback 2005).  Interest in individual-based models is 
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not usually in the individuals per se, but rather in the population properties that emerge because 

of the decisions and behaviors of individuals (Grimm and Railsback 2005, Macal and North 

2010).  In populations with complex social structures, population prediction can be especially 

difficult because individuals contribute differently to the population depending on their social 

role.  Wolves have a social structure where breeding pairs and their offspring make up packs 

(Mech and Boitani 2003).  Because not all wolves are breeders, the population effect from the 

death of a wolf depends on that wolf’s social status, the time of year, and the size of the 

population.  The death of a pregnant female wolf would reduce population recruitment while the 

death of non-reproductive yearling would have no effect on population recruitment in the next 

year beyond its own contribution to overall mortality.  Concerning the time of the year when a 

wolf death occurs, the death of a potential breeder before breeding season may or may not have a 

population effect depending on whether there is time for replacement of that breeder (Brainerd et 

al. 2008).  All of these population effects are more pronounced at small population sizes because 

of demographic stochasticity and possible Allee effects (Berec et al. 2001, Stenglein et al. 

unpublished).  With individual-based models, individual differences can be modeled explicitly 

leading to a more realistic population model.      

Individual-based models are sometimes used to understand the effect of various 

management actions (Grimm et al. 2005).  Anticipating the need for removal strategies of 

problem wolves from the growing SLS wolf population, Haight et al. (2002) developed an 

individual-based model to test the effect of three wolf removal strategies and the combinations of 

multiple strategies.  This individual-based model provided guidance to managers on wolf 

removal strategies by showing that proactive removal of wolves in areas near farms reduced 

depredations, removed fewer wolves than the reactive strategy, and was the least costly strategy 
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(Haight et al. 2002).  In another example, an individual-based spatially-explicit (IBSE) model to 

understand the effect of social structure on canid populations was used to evaluate coyote 

management strategies (Pitt et al. 2003, Conner et al. 2008).  This IBSE model showed that 

spatially intensive removal of coyotes was longer-lasting and more effective than random 

removal of coyotes (Conner et al. 2008).  These examples demonstrate the utility inherent in 

individual-based models and their use as realistic management tools.   

An IBSE model, though complex, makes explicit assumptions that enhance model 

transparency (Grimm 1999).  IBSE models are often more realistic than population-based models 

and this makes them easier to conceptualize by different groups of people.  Stakeholders 

interested in an issue can include science in their discussions through IBSE models that simulate 

different management scenarios (Bousquet and Le Page 2004).  However, it is important that 

IBSE models used to make management decisions are well-documented.  This documentation 

should include model assumptions, parameter values, and model predictions over a range of 

scenarios (Bart 1995).             

We developed an IBSE model to explore the effects of human-caused mortality sources 

on wolves in the SLS region.  The purpose of our model was to understand how wolf 

colonization and distribution in the SLS region was affected by roads, agriculture, and different 

mortality sources linked to the landscape, political boundaries, and management. Our model 

provided a visual and quantitative tool to understand and predict wolf population growth in 

Wisconsin.  The model also enabled evaluation of spatially-structured harvest scenarios on the 

Wisconsin wolf population. In particular, our objectives were to: 1) build and document a 

plausible IBSE model of the colonization of the Wisconsin and Michigan wolf population from 

resident Minnesota wolves, 2) calibrate the model using observed population growth of 
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Wisconsin and Michigan populations, 3) use the model to explore the effects of different types 

and timing of human mortality sources that occurred on different parts on the simulated 

landscape, and 4) demonstrate the use of the IBSE model as a platform for evaluating 

management proposals. 

Methods 

Spatial mortality risk map 

The IBSE model derived population parameters based on the collective behaviors and 

fates of individual wolves interacting with mortality risk that varied spatially.  To create a spatial 

mortality risk component, we took a heuristic approach to scaling a simulated wolf’s annual 

probability of mortality on the basis of road density and amount of agriculture in the SLS region 

(Wydeven et al. 2009b).  The response variable was the dead (N = 195) or alive (N = 15,134) 

status of radio-telemetry locations for each of 195 wolves in Wisconsin’s radio-telemetry 

database that were monitored consistently and found dead sometime during 1979 – 2012 (see 

Wydeven et al. 2009b for wolf capture, handling, radio-collaring, and tracking methods).  We 

used logistic regression conditioned on a wolf’s identity to remove unobserved individual 

heterogeneity (Gail et al. 1981).   

We used roads and agriculture as predictors because these variables were selected from a 

suite of 16 variables (some highly correlated) in a pack-level analysis of wolf habitat quality in 

Wisconsin by Mladenoff et al. (2009).  We quantified road density (km/km
2
) and percentage of 

agriculture in 1 km buffers around each radio-telemetry location (see Appendix A for details on 

road and agriculture parameter derivation).  We performed the conditional logistic regression in 

Program R  (Version 3.0.1, R Development Core Team 2013) using function ‘clogit’ in the 

‘survival’ package (Therneau 2013).   
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We gridded a 630 km x 554 km landscape of the SLS region centered on Wisconsin into 

1 km
2
 pixels, and obtained road density and percent agriculture covariates for each land pixel.  

Next, we obtained a value from the fitted model for each land pixel using Raster Calculator in 

ArcMap (Version 9.2, Environmental Systems Research Institute 2009).  These fitted values 

were the probabilities that an average wolf’s radio-telemetry location would be a death location, 

and the predicted values did not directly translate to annual mortality rates.  Therefore, we scaled 

these fitted values to reflect the annual mortality rate for wolves in Wisconsin (Wydeven et al. 

2009b).  The scaling reflected the estimated annual mortality rate for wolves in primary wolf 

range in Wisconsin from our survival analysis in Chapter 2 (Appendix A).  Therefore, the spatial 

mortality risk map reflected the majority of the annual probability of mortality for the simulated 

wolves.  

The IBSE model 

We built an IBSE model of the SLS wolf population in NetLogo v. 5.0.1 (Wilensky 

1999) and describe it following the Overview, Design concepts, and Details protocol (Grimm et 

al. 2006, Grimm et al. 2010).  We assumed that observed population dynamics were primarily 

driven by the model rules that affected the behaviors and decisions of individual virtual wolves 

(hereafter, wolves).  Wolves faced decisions on life stage events reflecting wolf phenology in the 

SLS wolf population (Wydeven et al. 2009a).  In addition to the phenomological realism, our 

model used the best-available data from the SLS wolf population to parameterize life stage 

events, including dispersal (Treves et al. 2009), litter size (Fuller et al. 2003), territory size, and 

pack size (Wydeven et al. 2009b).  

Because of our interest in inferences about the SLS wolf population, and in particular the 

Wisconsin wolf population, we constructed a SLS landscape for simulated wolves.  This 
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particular SLS landscape focused our model inference on the specifics of colonization and the 

interaction of different mortality factors for wolves in the SLS region.  Despite criticism for the 

complexity of IBSE models (Grimm 1999), the level of complexity we  included in this IBSE 

model was necessary to address our questions about the SLS wolf population.    

State variables and scales 

The IBSE model included four hierarchical levels of organization: individual wolves, 

territories, the wolf population, and the landscape (Table 1).  The model incremented population 

dynamics in 1 year time steps designed to match wolf life history events during an annual cycle 

(Fig. 1).  The simulation ran for 100 years or until all wolves were extinct.   

We defined territories as 15 x 15 km square patches of habitat where the center of the 

territory was in breeding range (Table 1, Fig. 2E).  We used the average territory size of wolf 

packs with ≥ 20 radio-telemetry locations in Wisconsin from 2001 – 2006 (mean = 136 km
2
, SD 

= 67) to inform mean territory sizes in the model (Wydeven et al. 2009b).  However, calculation 

of mean territory size from minimum convex polygons is a minimum estimate and did not 

include the interstitial area between packs, which increase average pack size by 37% (Fuller et 

al. 1992).  Therefore, we gridded the landscape into potential territories of 225 km
2
, and 

territories were considered occupied if there were ≥ 2 wolves within the territory boundary.        

Virtual packs of wolves (hereafter, packs) were identified as aggregates of 2 – 12 wolves 

located in discrete territories.  Packs consisted of a breeding pair, their offspring of multiple 

generations, and any unrelated wolves that dispersed into the pack.  Packs could also have a 

single breeder or no breeders if one or both breeders died.  Wolves were identified as either a 

member of a certain pack or as lone wolves.  Lone wolves were wolves that were outside pack 
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territories or wolves that did not have any full siblings within an 8 km radius of their location 

(the size of 1 territory).  When within territories, lone wolves were considered part of the pack.   

State variables for individual wolves were identification number, sex, age, breeder status, 

disperser status, immigrant status, pack status, mother’s identification number, and father’s 

identification number (Table 1).  Breeder status, pack status, and genetic heritage (i.e., mother’s 

identification number, father’s identification number) were the primary determinants of wolf 

movement and behavior on the landscape.   

Process overview and scheduling 

In each year of simulation, wolves searched for mates, dispersed and searched for mates 

again, reproduced, experienced a targeted lethal control event (once the Wisconsin population 

>349 wolves), dispersed (if pack sizes were larger than 12 wolves), were hunted (once the 

Wisconsin population >843 wolves), faced spatial mortality risk, and aged (Fig. 1).  Aside from 

aging and the spatial mortality risk event, not all wolves participated in or were affected by each 

event.  Within each event, individuals were processed randomly and transitions associated with 

all state changes apart from aging occurred according to probability distributions (Table 2). 

Initialization and input data 

Simulations began with 20 male wolves and 20 female wolves that formed breeding pairs 

in 20 randomly chosen pack territories in northeastern Minnesota.  The initial individuals were 

given a random age (1 – 12) and pack membership as breeders.      

The landscape was read into the model by its x and y coordinates (spaced 1 km apart) and 

all associated landscape variables.  We constructed this file in ArcMAP beginning with a point 

layer with a grid of points spaced 1 km apart over the entire landscape.  We included the 

following layers: state boundaries (Minnesota, Wisconsin, Michigan, Iowa) or water (Fig. 2A), 
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Ojibwe ceded territories of Wisconsin (a region where bands of the Ojibwe Tribe may exercise 

treaty rights to hunt and gather resources, Fig. 2B), Ojibwe Indian reservations of Wisconsin 

(Fig. 2B), Wisconsin wolf harvest zones (WHZs, Fig. 2C), Wisconsin chronic depredation farms, 

livestock depredation sites, and a 5 km buffer around depredation areas (depredation buffer, 

hereafter, Fig. 2D), pack territories (Fig. 2E), and the spatial mortality risk map (Fig. 2F).  The 

value of each layer at each set of coordinates became the value for the       km pixel.  The 

percent harvest per WHZ in Wisconsin and the percent harvest across Minnesota and Michigan 

were inputs to the model and used to construct the harvest scenarios.  Also, the timing of harvest 

was input into the model.     

Submodels 

Mate-finding 

Mate finding was an action taken by lone wolves and single breeders, and occurred ≤ 2 

times per year (Fig. 1).  Lone wolves would search for mates, have an opportunity to disperse if a 

mate was not found (see dispersal for mate-finding section, below), and then search for mates a 

second time.  We defined single breeders as territorial breeding wolves whose mates died.  We 

allowed single breeders to pair up by first allowing any subordinate, unrelated adult wolves of 

the opposite sex in their own pack to fill the vacant breeding position and by allowing any 

unrelated lone wolves of the opposite sex from up to 2 territories away to usurp the empty 

breeding position if breeders were unavailable within the pack.     

Any remaining lone wolves would then search out each other.  A male lone wolf would 

search for an unrelated female lone wolf within 2 territories of his location; if found, the male 

and female would move to the closest territory.  They would form a breeding pair if the territory 

was unoccupied by another breeding pair.  We chose a distance of 2 territories away because a 
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sensitivity analysis demonstrated that this distance resulted in simulated population growth that 

matched the observed population growth more closely than using other distances (Stenglein, 

unpublished data). 

Dispersal for mate-finding (winter dispersal) 

Wolves dispersed after a first round of mate-finding if they were not part of a breeding 

pair, were not single breeders, and were not part of a pack.  Dispersing wolves chose a random 

direction and dispersed a distance drawn from a lognormal probability distribution with mean = 

3.918 and SD = 1.005 on the log scale (Treves et al. 2009).  According to this distribution, 

wolves dispersed an average of 50 km.   

The wolves that dispersed outside of the land area (i.e., into the water pixels) were 

considered emigrants.  An equal number of immigrants were then generated and entered the 

simulation in randomly chosen locations in breeding range.  Wolves that entered the simulation 

as immigrants were given a random age (1 – 12) and random sex assignment, pack membership 

if they arrived in an occupied territory, status as an immigrant, and no mother and father 

identification numbers.  The immigrants represented wolves that entered the SLS region from 

Canada, and did not represent wolves that moved from one area of the SLS region into another 

area of the SLS region (e.g., wolves from Minnesota that moved into Wisconsin were not 

considered immigrants).       

Reproduce 

Females in breeding pairs would reproduce each year producing a single litter.  Litter 

sizes were drawn from a normal distribution with mean = 5.406 and SD = 0.790 reflecting the 

mean and standard deviation of litter sizes from North American studies (Fuller et al. 2003).  We 

rounded the value drawn from the distribution to the next whole number to represent litter size as 
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a whole number of pups.  Wolves born into the simulation were given age 0, a random sex 

assignment, a membership into their current pack, and their mother’s and father’s identification 

numbers.   

Targeted lethal control  

The Wisconsin portion of the simulated wolf population was exposed to targeted lethal 

control during summer when the Wisconsin winter population count was > 350 wolves, and 

every year thereafter.  We chose to initiate the targeted lethal control event when the simulated 

Wisconsin population reached 350 wolves because a minimum count of 353 wolves was 

recorded in Wisconsin in 2003 when the targeted lethal control program actually began (Ruid et 

al. 2009, Wydeven et al. 2009b).   

Targeted lethal control events removed 10% of the wolves (calculated from the 

Wisconsin winter population count) primarily from the depredation buffer (Fig. 2D).  We chose 

10% of the winter count because in the years since 2003 when lethal control was allowed at least 

half of the year, 5.1 – 9.3% of the winter population was killed from lethal control action (Olson 

2013).  In 2012 and 2013, once wolves were delisted, lethal control action removed 9.3% and 

8.2% of the winter population, respectively.  For the IBSE model, we chose the slightly higher 

value of 10% lethal control of the winter population to represent the proportion of lethal control 

that we expected in a delisted population.  Also, 10% lethal control of the winter population 

translates to < 10% mortality due to lethal control in the population once it implemented because 

there are many more wolves in the summer (season of lethal control) after the birth of pups.  In 

the IBSE model, we removed 90% of the targeted lethal control quota from the depredation 

buffer and restricted to areas outside of Ojibwe Indian reservations.  If there were not enough 

wolves within the depredation buffer, then wolves were removed from an additional 5 km buffer 
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around the depredation buffer to fill the quota (Fig. 2D).  The remaining 10% of the quota (1% of 

the Wisconsin winter population count) were removed from random locations in Wisconsin 

outside of Ojibwe Indian reservations.  We chose for most (90% of the lethal control quota) of 

lethal control events to focus in the depredation buffers because most depredations are related to 

livestock loss and they occur in very specific locations, like the chronic depredation farms and 

known depredation sites that we used in our model (Ruid et al. 2009, Olson 2013). 

Dispersal due to resource limitation (Fall dispersal) 

We used a threshold pack size of 12 wolves as a trigger for a second type of dispersal to 

model resource limitation in the pack (Fig. 1).  This number was based on the observations that 

maximum pack sizes in Wisconsin were 12 wolves from 1980 – 2007 (Wydeven et al. 2009b).  

In the model, packs with > 10 non-breeding pack members would assign a number of members 

in excess of this non-breeder pack maximum to disperse out of the pack.  The individuals were 

chosen randomly from among the non-breeding pack members.  For example, if there were 12 

non-breeding pack members, the model would randomly select 2 of them to disperse out of the 

pack.  These dispersers were assigned a random direction and dispersed a distance of kilometers 

drawn from a lognormal distribution (3.918, 1.005).  Dispersers died unless they arrived in an 

occupied territory with < 12 wolves, a vacant pack territory, or other land area.   

Harvest 

We initiated harvest when the winter population count was > 843 wolves in Wisconsin 

since this was the population size observed during winter of 2011-2012 before the first actual 

harvest.  Harvest quotas were calculated as user-determined percentages of the population 

harvested per WHZ times the winter population count in each WHZ.  We chose a constant 

harvest level for Minnesota and Michigan and harvest quotas in these states were calculated as 
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the percent harvest multiplied by the previous winter’s population count.  In most cases, harvest 

occurred as a fall harvest after dispersal and before the spatial mortality risk event.  However, in 

some cases, a percentage of the harvest was allocated as a winter harvest which occurred early in 

the calendar year, after mate-finding and before reproduction.  Wolves were chosen randomly for 

harvest.  We did not expect that harvest rates would be different for different age and sex classes 

because mortality rates overall do not vary by age and sex class (Wydeven et al. 2009b). 

Spatial mortality risk 

The spatial mortality risk event scaled an individual wolf’s probability of mortality to the 

spatial mortality risk map (Appendix A).  Each wolf was assigned a number from Uniform 

distribution (0, 1) and if this number was less than the spatial mortality risk value at their 

location (1 km
2
 pixel), they would die.  We chose for spatial mortality risk to occur just one time 

per year in the winter because this is when actual wolves in Wisconsin experience their highest 

mortality rates (see Chapters 1 and 2). 

Age 

At the very end of the calendar year, all wolves aged 1 year.  Wolves died if they were > 

12 years old.  Wild wolves as old as 15 years old (Theberge and Theberge 1998) and breeding 

wolves as old as 11 years have been documented (Mech 1988).  However, these old-aged wild 

wolves are very rare (Mech 1988, 2006).   

Model calibration 

We calibrated the model by comparing how simulated population growth matched 

observed population growth in Wisconsin and the wider SLS region.  In particular, using the first 

35 years of the simulation without any harvest, we documented: 1) the yearly mean Wisconsin 

winter population count, 2) the yearly mean winter population count in the SLS region, and 3) 
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the yearly mean number of pups in Wisconsin in the winter.  For each of the quantities counted 

in the simulation, we compared them to data collected on the wolf population in Wisconsin and 

Michigan from 1979 – 2012 (Beyer et al. 2009, Wydeven et al. 2009b).  We assessed 

correspondence by running 100 simulations and quantifying how often the 95% confidence 

intervals from the IBSE model simulations contained the observed population trend.   

Simulations 

Simulations in the IBSE model served two purposes: 1) to show the effects of different 

sources, rates, and timings of mortality on population counts, structure, and distribution, and 2) 

demonstrate the use of the IBSE model as a platform for evaluating management proposals.  We 

ran six different simulations where we varied the intensity, location, and timing of harvest: 1) no 

harvest, 2) the 2012 Wisconsin harvest rates, 3) the 2012 Wisconsin harvest rates with 75% fall 

harvest and 25% winter harvest, 4) the 2013 Wisconsin harvest rates, 5) 30% harvest across the 

entire simulation, and 6) a rate of Wisconsin harvest that would enable a stable to increasing 

wolf population in the ceded territories of Wisconsin (Table 3).  

Each simulation consisted of 100 iterations.  In each simulation, we tracked number and 

age structure of wolves, number of packs, number of wolves in the depredation buffer, number 

and age structure of harvested wolves, number of pups born, the proportion of disrupted packs 

because of harvest (the number of packs that lost at least 1 breeder because of harvest divided by 

the number of packs that bred prior to harvest), and dispersal and immigration rates.  We 

recorded these quantities at the end of each simulated year. 

Results 

Spatial mortality risk map 



131 

 

According to the model, an increase in road density and an increase in percent agriculture 

increased the probability that a location was a death location (Appendix A).  The scaled spatial 

mortality risk probabilities ranged from 0.229 to 0.452, and the average spatial mortality risk for 

simulated wolves was 26 – 27%, which was the same as the average annual mortality of 26% 

that we estimated for wolves in Wisconsin (Chapter 2).  There were no substantial differences in 

survival by age and sex class for wolves, so we assumed the same spatial mortality risk map for 

all wolves (see Chapters 1 and 2; Wydeven et al. 2009b).  The risk map showed generally a 

lower probability of mortality in the northern and central forest regions of Wisconsin, the upper 

peninsula of Michigan, and the northeastern portion of Minnesota (Fig. 2F). 

The IBSE model 

All simulated wolf populations persisted for 100 years.  Simulated populations that were 

not harvested stabilized at 1242 wolves (SD = 34) in Wisconsin after 50 years and at 2453 

wolves (SD = 56) in the SLS region after 60 years (Fig. 3A).  The average annual per capita 

growth rate was 7.2% (SD = 13.7) in Wisconsin (Fig. 3B).  Average winter pup:yearling:adult 

ratio after 50 years of simulation was 37:23:40, and mean breeder:nonbreeder ratio was 13:87.  

On average after 50 years of the simulation, 45.9% (SD = 4.3) of the packs that produced pups 

retained both breeders through the next winter count and the breeding pair tenure averaged 1.8 

(SD = 0.1) years.   

Mean pack size in Wisconsin after 50 years was 8.1 wolves (SD = 0.2) and an average of 

52% of the pups born survived to the winter count.  Mean dispersal rate during mating was 6.7% 

(SD = 0.01), and 2.1% (SD = 0.003) of the Wisconsin population emigrated from the study area 

(and an equal proportion immigrated into the study area).  After 50 years, the summer-targeted 

lethal control events killed 5.9% (SD = 0.001) of the summer population (10% of the winter 
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population, but there are more wolves in summer with the birth of pups), and disproportionately 

targeted pups in relation to their availability.  Wolves were removed at random from within the 

depredation buffer areas, so a higher proportion of pups removed meant that depredation buffer 

areas had proportionally more pups compared to the rest of Wisconsin.  On average, 18.1% (SD 

= 0.01) of the fall population dispersed during fall dispersal because of resource limitation at the 

pack level, and 27.9% (SD = 0.01) of the Wisconsin population died because of spatial mortality 

risk with pups, yearlings, and adults dying in proportion to their availability.  

After 50 years of simulation, most wolves in the depredation buffer occurred in summer 

after birth of pups and before the targeted lethal control event (mean = 43, SD = 14).  Targeted 

lethal control removed typically all wolves in the depredation buffer.  Spatial mortality risk 

reduced the mean number of wolves in the depredation buffer from 25 (SD = 5) to 17 (SD = 4) 

after 50 years.  The birth of pups led to a spike in the number of wolves in the depredation buffer 

(19 wolves pre-pup birth to 43 wolves post pup birth, on average, in the depredation buffer), 

followed by the fall dispersal (0 wolves pre-fall dispersal to 25 wolves post fall dispersal in the 

depredation buffer).       

Model calibration 

Simulated winter population counts were within 1 SD of the estimated Wisconsin and 

SLS population counts in all except the first 5 years of the simulation (Fig. 4A).  Similarly, the 

winter pup counts in Wisconsin were within 1 SD of the estimated Wisconsin pup counts in all 

except the first 5 years of the simulation and in 1993 when the simulated wolf pup count was 

larger than the estimated wolf pup count (Fig. 4B).   

Simulations  
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Mean winter population count in Wisconsin after 100 years of simulation ranged from 19 

(SD = 25) to 1257 (SD = 38) wolves depending on harvest scenarios.  There was 30% more 

variation among simulations in the 2012 long-harvest scenario after 100 years compared to the 

other scenarios.  In the 30% harvest scenario, 14% of simulations went extinct before 100 years, 

while all simulations from all other scenarios persisted for 100 years.  Harvest generally began in 

year 33 of the simulation (range: 26 – 43) when there was a mean of 878 (SD = 24) wolves in 

Wisconsin outside of Ojibwe Indian reservations.  Harvest reduced the Wisconsin population 

size by an average of 1.2% (SD = 3.1) to 17.3% (SD = 2.9) in the first year, and -9.2% (SD = 

6.3) to 94.7% (SD = 3.9) in the 50
th

 year (Fig. 5).  The only harvest simulation that resulted in 

population growth after 50 years was the stable population harvest scenario that had a goal of a 

stable to increasing population in the ceded territories (Fig. 5).  Composition of harvests was 

generally 62 – 65% pups and yearlings and this was the approximate proportion of pups and 

yearlings in the population.  

The 2012 harvest scenario achieved a mean 4.1% (SD = 2.9) population reduction in the 

first year, similar to the estimated actual reduction of Wisconsin’s wolf population of 3.1% after 

the 2012 hunt (based on midpoints of 847.5 wolves in 2011/2012 and 821.5 wolves in 2012/2013 

during winter population counts).  After the first year decrease in the simulated populations, 

populations under the 2012 harvest scenario equilibrated at pre-harvest levels by year 20 of 

harvest (Fig. 5).  Compared to the 2012 harvest scenario, the 2012 long-harvest scenario had less 

population reduction in the first year of harvest (mean = -1.7%, SD = 3.1), but more population 

reduction every year thereafter (Fig. 5).  The 2012 long-harvest scenario had a 7.3% population 

reduction (SD = 6.4) by the 50
th

 year of harvest, and variation in population reduction was 

always higher in the 2012 long harvest scenario compared to the 2012 harvest scenario (Fig. 5).  
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We suspect that the possibility of harvesting mated females in the long-harvest scenario led to 

more variation in next year’s population size because the harvest of each mated female resulted 

in reproductive loss for an entire pack.   

The 2013 harvest scenario reduced the Wisconsin wolf population by 24.9% (SD = 4.0) 

on average after 5 years of harvest and 36.0% (SD = 4.9) after 50 years of harvest to stabilize at a 

mean of 597 (SD = 39) wolves after 100 years (Fig. 5).  At a 30% constant harvest rate (i.e., 30% 

harvest scenario), the simulated wolf populations had a similar reduction of 24.9% (SD = 4.0) in 

the population after 5 years of harvest, but then continued to decline and sometimes went extinct.   

There was a reduction of 94.7% (SD = 3.9) in the population on average after 50 years of harvest 

(Fig. 5).   

After 5 years of harvest, there were 1 – 3% more pups in the winter population for all 

scenarios that had harvest (Table 4). This result was probably because harvest reduced the 

number of adults.  Overall, the winter breeder:nonbreeder ratio stayed very consistent across 

scenarios and years since harvest.  Average pack size increased with time in the no harvest 

scenario, and decreased with harvest by 0.6 – 1.7 wolves per pack after 5 years of harvest (Table 

4).  Average dispersal and immigration rates increased with time in the no harvest scenario but 

decreased proportionally with harvest in harvest scenarios (Table 4).  Mortality from the spatial 

mortality risk remained at 26 – 27% regardless of the time or harvest scenario (Table 4).  On 

average, 42% of breeding pairs bred for ≥ 1 year in the no harvest simulations and the rate did 

not vary as growth decelerated in later years.  However, percentage of breeding pairs that bred 

for ≥ 1 year decreased 3 – 12% after the first year of harvest compared to the no harvest 

scenarios (Table 4).  Average tenure of breeding pairs was 1.8 years in the no harvest scenario, 

and decreased to 1.5 in the 30% harvest scenario after 5 years of harvest (Table 4).     
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The sequence of the life history events during simulation affected the number of wolves 

located in the depredation buffer areas (Fig. 1, Fig. 6).  In all harvest simulations after the first 

and twentieth years of harvest, targeted lethal control was the most important event in reducing 

wolves in the depredation buffer reactively and corresponded to the time of year when most 

depredations occurred (Olson 2013; Fig. 6).  This result was not surprising because the rules for 

targeted lethal control directly removed wolves in the buffer zones from the simulation (see 

Targeted lethal control, above).  The second most important source of mortality for wolves in the 

depredation buffer was spatial mortality risk.  In the simulation, fall harvest had a proactive 

impact on the number of wolves in the depredation buffer, but the effect was smaller because 

harvest was not directed into depredation buffer areas (Fig. 6).  The largest increase in wolves in 

the depredation buffer during the simulated year occurred because of reproduction and then fall 

dispersal (Fig. 6). 

Discussion 

We built, documented and calibrated an IBSE model of the colonization and population 

dynamics of SLS wolves.  Our approach enabled modelling dynamics associated with the 

complex life history of wolves relating to pack structure, breeding status, age, sex, kin 

relationships, and location with respect to other wolves and features on a particular landscape.  

Our IBSE model currently is used by managers at Wisconsin Department of Natural Resources 

to explore how different harvest scenarios may impact Wisconsin’s wolf population (Wolf 

harvest rule to Natural Resources Board, July 2012 board meeting), and the model-estimated 

population reduction we predicted matched observed reduction following the 2012 and 2013 

wolf harvests in Wisconsin.  The Great Lakes Indian Fish and Wildlife Commission used our 

IBSE model to explore the effect of harvest on the wolf population defined by the ceded 
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territories of Wisconsin.  They developed a harvest scenario with the goal of a stable to 

increasing wolf population in the ceded territories of Wisconsin because of the spiritual and 

cultural importance of wolves to the Ojibwe people (David 2009, Stenglein and Gilbert 2012).  

Harvest rates of 5 – 20% in WHZs 1 – 5 and 75% in WHZ 6 led to a stable population size of 

1000 wolves after 20 years of harvest and an average harvest of > 90 wolves per year.  These 

uses demonstrate the utility of an IBSE model that multiple agencies and members of the public 

can use and understand.     

 Calibration of our IBSE model to observed growth in Wisconsin’s wolf population was 

vital.  Our model closely aligned with actual wolf population and pup counts documented in 

Wisconsin and the SLS region from 1985 – 2012.  Our calibration required that the IBSE model 

begin with wolf packs in Minnesota that recolonized Wisconsin and Michigan for each 

simulation, because the SLS landscape has a corridor of patchy habitat between Lake Superior to 

the north and agricultural areas to the south (Mladenoff et al. 1995, Mladenoff et al. 1999).  The 

landscape configuration required simulated wolves in Minnesota to disperse east to find breeding 

range and increase their population size.  This simulated recolonization allowed for the 

development of simulated pack structure and a realistic distribution of wolves across the 

simulated SLS landscape.    

The IBSE model generated at least three emergent components of wolf biology for 

wolves in the SLS region.  First, the simulated unharvested wolf population reached a carrying 

capacity that we can compare to other estimates of carrying capacity from the literature.  Van 

Deelen (2009) fit growth curves to the SLS wolf data from 1985 – 2007 and estimated a carrying 

capacity of 1,321 (95% CI: 1,215 – 1,427) wolves with ~650 wolves as the carrying capacity for 

Wisconsin alone.  The equilibrium population size from our IBSE model suggests that an 



137 

 

unharvested wolf population would stabilize at nearly double the level previously estimated by 

Van Deelen (2009).  Second, simulated wolves had a limited perception neighborhood for mate 

searching.  We calibrated the IBSE model  using a mate search distance of two territories away 

because our previous work with this model demonstrated that a mate search distance of < 2 

territories and > 2 territories resulted in a population that grew too slowly (and sometimes went 

extinct) and a population that grew too quickly compared to actual growth.  Therefore, we 

suggest two territories (30 km) as a realistic biological perception neighborhood for mate 

searching in the SLS region, which is similar to the perception neighborhood of ~20 – 40 km 

used for wolves in the Greater Yellowstone Ecosystem, USA (Hurford et al. 2006).  This 

perception neighborhood may change due to landscape configuration, environmental factors, and 

proximity to other conspecifics (Berec et al. 2001, Hurford et al. 2006).   

Third, we documented social effect of harvest in a simulated wolf population.  Our IBSE 

model is the first model that can infer effects of human-caused mortality on social structure of 

packs.  Wolves exist in packs consisting of a breeding pair and multiple generations of offspring, 

and exploitation may disrupt pack structure and lead to a higher proportion of pups (Fuller et al. 

2003, Rutledge et al. 2010).  We documented these effects of harvest in our IBSE simulation 

because harvest increased the proportion of pups in the population and caused more disruption in 

packs by killing breeders and decreasing the average tenure of breeding pairs.  The mechanism in 

the model to produce this result was harvest mortality that was homogeneous by WHZ.  A 

change in the composition of packs or the loss of a breeder could have additional cascading 

effects that were not well captured in our model (Brainerd et al. 2008).  Our IBSE model did not 

include explicitly a lag effect of breeding pairs reestablishing once one or both breeders were 
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lost, which is a phenomenon documented in wolves (Brainerd et al. 2008).  Therefore, our IBSE 

model may underestimate the social effect of harvest on the wolf population.   

 Our IBSE model demonstrated that the timing and location of mortality events affected 

the wolf population in different ways depending on wolf phenology.  For example, extending 

harvest into the mating season resulted in more pack disturbance, higher population reduction, 

and more variability compared to the same amount of harvest restricted to the fall months.  We 

suspect that this result is because some of the simulated female breeders were killed in the late 

harvest and this precluded pack reproduction for the year.  The higher spatial mortality risk of 

mortality in agricultural areas and areas with high road density in Wisconsin prevented wolves 

from establishing packs outside of their primary range.  The annual targeted lethal control 

removed the wolves in the depredation buffer areas and was the single-most important mortality 

event for maintaining low wolf populations in known depredation areas.  Moreover, targeted 

removal events coincided with the time of year of when wolf depredations were occurring (Olson 

2013).  After targeted lethal control, the general spatial mortality risk was more effective at 

reducing the number of wolves in the depredation buffer compared to harvest.  Harvest could 

have been a more important factor in reducing the number of wolves in the depredation buffer 

areas if WHZs were configured around these areas of known high livestock depredation and 

harvest rates were high in these areas (Haight et al. 2002).     

 We highlight differences between political and biological boundaries for the SLS wolf 

population.  The timing, level, and distribution of harvest affected the distribution, composition, 

and size of the wolf population.  However, the most striking harvest effects occurred when 

Michigan and Minnesota wolves were harvested as intensively as Wisconsin’s proposed 2013 

harvest.  Instead of Wisconsin’s population stabilizing at some 600 wolves with the proposed 
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2013 harvest rates and Michigan and Minnesota harvesting at much lower rates, the wolves in 

the entire simulation plummeted.  This is evidence of source-sink dynamics in our Great Lakes 

simulated landscape, and these dynamics become more apparent with increasing harvest (Pulliam 

and Danielson 1991).  When Wisconsin harvests at high levels compared to the Upper Peninsula 

of Michigan and Minnesota, Wisconsin likely becomes a population sink, with a source of 

wolves (mainly from the Upper Peninsula of Michigan) that supplement the diminishing 

Wisconsin wolf population.  Wisconsin, Michigan, and Minnesota have a single wolf population, 

and the management decisions in one state affect the dynamics across this region.   

 An IBSE model is only as good as the parameter estimates that drive it.  We were 

fortunate to have access to a long history of wolf research in the SLS region, and could derive 

the parameter estimates for our model from many sources (Mech 1970, Thiel 1993, Wydeven et 

al. 1995, Thiel 2001, Mech and Boitani 2003, Wydeven et al. 2009a).  We fit distributions to 

empirical data and our simulations drew from these distributions.  However, some processes are 

not easy to parameterize in an IBSE model because of lack of information or complexity.  

Decisions for parameterization of each life history event were needed despite relatively poor 

understanding of these events.  For example, general dispersal rates across age and sex classes 

for different times of the year are not well documented.  In our simulation, we decided to not 

treat dispersal decision as a random draw from a distribution.  Rather, we decided that dispersers 

were all wolves that fit certain criteria and these criteria changed depending on the time of the 

year.  Also, we used a very simplistic understanding of pack structure based around an unrelated 

mated pair and their offspring of multiple generations, even though we know that inbreeding 

does occur occasionally in the wild (Mech and Boitani 2003, Vonholdt et al. 2008, Rutledge et 

al. 2010, Stenglein et al. 2011).    
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 Nonetheless, complex life histories largely preclude the use of simple phenomenological 

models especially for questions that are driven by controversial management actions such as the 

aggressive harvests being proposed for newly recovered wolf populations (Levins 1966). Our 

IBSE model is a simplification of how we understand wolves to be interacting on the landscape, 

and simplification is inherent in modelling (Levins 1966).  It is not necessary for our model to be 

a perfect depiction of wolf life history, because our interest is in population-level questions and 

our model reflects wolf population growth and effects of harvest thus far.  We advocate 

modelling, not as an endpoint, but as a step in an iterative process of integrating current 

knowledge, identifying critical information needs, and conducting research to advance our 

understanding and ability to predict population dynamics.  For wolves, we see a main research 

need of understanding how harvest affects the social structure of wolf populations and the 

behavior of individual wolves. 

Management Implications 

It is appropriate to view the Great Lakes wolf population as a single population that is 

managed jointly by Minnesota, Wisconsin, Michigan, and Ontario, Canada.  It is clear from our 

model that the management decisions in one place affect the entire population.  We highlight the 

annual Midwest Wolf Steward meeting that brings together managers, researchers, non-profit 

organizations, and other stakeholders to have important conversations about wolves in this 

region.  We estimate that harvest rates well below 30% of the winter population across the Great 

Lakes Region will be necessary to ensure long-term population viability.   

Pertaining to wolf management in Wisconsin, we highlight that a reconfiguration of the 

location and number of WHZ for harvest could be an effective way of reducing wolf numbers in 

depredation areas.  Some zones could be smaller areas where there is a high incidence of 

livestock depredations, and harvest rates could be much higher in these zones.  Livestock 
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depredation sites have been predicted from environmental variables, and this information could 

be used to delineated different WHZ (Treves et al. 2004, Olson 2013).     

We demonstrate the use of IBSE models in an adaptive management framework to assess 

the effects of harvest and exploitation of other wolf populations and populations of other large 

carnivores with the goal of better decision-making for management of populations.  Adaptive 

management is an iterative decision-making process that is essentially an optimization problem 

to maximize an objective in the face of uncertainty (Walters and Hilborn 1978).   We 

demonstrated how our model could be optimized to meet an objective, by simulating a wolf 

harvest with a goal of a stable to increasing population.  The process of developing an IBSE 

model is useful in itself to identify research questions, management needs, stakeholders, 

available data, and gaps in available data.  Our model has already been used effectively in the 

beginning stage of an adaptive management approach to wolf harvest in Wisconsin, and may 

continue to be used to inform harvest decisions and improve future management of wolves. 
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Table 1. Landscape, wolf population, territories, and individual wolf state variables with 

definitions and descriptions used in an individual-based spatially-explicit model of wolves in the 

southern Lake Superior region, USA. 
Entity Variable Description 

Landscape Spatial mortality risk Land pixels with a probability of mortality for wolves derived from 

agriculture and road density. 

 Breeding range Areas of Minnesota, Wisconsin Wolf Management Units 1 – 5, and the 

Upper Peninsula of Michigan where the spatial mortality risk is < 0.75. 

 Ceded territories Wisconsin land pixels that make up the territories ceded from the United 

States in various treaties.   

 Chronic depredation 

farms 

Farms in Wisconsin with at least 2 verified livestock depredations in a 5 

year period. 

 Depredation sites Farms in Wisconsin with a verified depredation in 2010 or 2011. 

 Depredation buffer Areas within 5 km of chronic depredation farms or depredation sites. 

 Ojibwe Indian 

reservation 

Wisconsin land pixels categorized as belonging to an Ojibwe Indian Tribe, 

including Red Cliff, Bad River, Lac Courte Oreilles, Lac du Flambeau, and 

Menominee/Stockbridge-Munsee. 

 State Land pixels categorized as Wisconsin, Upper Peninsula of Michigan, lower 

peninsula Michigan, Minnesota, and Iowa. 

 Territory 15 km x 15 km blocks of land pixels in Minnesota, Wisconsin, and the 

Upper Peninsula of Michigan with a center in breeding range. 

 Wolf harvest zones 

(WHZ) 

Wisconsin land pixels categorized by WHZ 1, 2, 3, 4, 5, or 6. 

Wolf 

population 

Number harvested The number of wolves harvested and sometimes divided into a fall harvest 

and winter harvest. 

 Number killed from 

spatial mortality risk 

The number of wolves killed because of an annual mortality event in late 

fall correlated with road density and percent agriculture. 

 Number killed from 

depredation 

The number of wolves killed because of livestock depredation activity 

mainly in a targeted fashion around depredation buffer areas. 

 Number of breeders A winter count for the number of wolves that were breeders in the past 

Spring and were still alive for the winter count. 

 Number of 

nonbreeders 

A winter count for the number of wolves that were not breeders the 

previous Spring. 

 Number of pups A count of the new Spring recruits still alive in the winter count.   

 Population size The number of wolves at various times in the simulation and for various 

spatial delineations of wolves (e.g., Wisconsin population size). 

Territories Identification number Each territory has a unique identification number that remained throughout 

the simulation. 

 Pack size The number of wolves in the territory. 

 Pack members The set of wolves in the territory.   

 Number of breeders The number of breeding wolves in the territory. 

 Litter size A count of the number of pups that are produced each summer by a 

breeding pair.   

Individual 

wolves 

Identification number Each wolf’s unique identification that it is given when it enters the 

simulation. 

 Sex Male or female and determined randomly at birth and for immigrants 

entering the simulation. 

 Age A whole number 0, 1, 2, …, 12 and defined randomly for immigrants.  Pups 

were born with age = 0 and all wolves die at age of 12.   

 Pack status A categorization given to wolves in a pack territory.  

 Immigrant status Wolves that enter the simulation as immigrants.   

 Breeder status Wolves that have a breeding position in the pack and given to at most 1 

male and 1 female in a pack.  A breeder maintains breeder status in a pack 

as long as he/she is alive. 

(Table 1 continued on next page) 



148 

 

Table 1 (continued). Landscape, wolf population, territories, and individual wolf state variables 

with definitions and descriptions used in an individual-based spatially-explicit model of wolves 

in the southern Lake Superior region, USA. 
Entity Variable Description 

Individual 

wolves 

Disperser status Wolves that disperse at any one or more of the dispersal opportunities in the 

year.   

 Dispersal direction Wolves that disperse chose a random direction each time they disperse.  

 Dispersal distance Wolves that disperse chose a dispersal distance from a distribution each time 

they disperse.  

 Loner status Wolf that is not a breeder and does not have any siblings or a parent in its 

pack or is outside of breeding range.  

 Mother identification 

number 

Every wolf born in the simulation took its mother’s identification number.  

Immigrants and wolves that begin the simulation took their own number. 

 Father identification 

number 

Every wolf born in the simulation took its father’s identification number.  

Immigrants and wolves that begin the simulation took their own number. 

Definitions Breeding pair Two unrelated wolves of the opposite sex that resided on a pack territory and 

bred. 

 Breeding pair tenure The number of years that the same breeding pair produced pups. 

 Disrupted pack Reproductive pack that lost at least 1 breeder to some mortality event.  

 Lone wolf Wolf outside of breeding range or within breeding range but without parents 

or siblings within an 8 km radius. 

 Pack 2 – 12 wolves that resided on a pack territory. 

 Pack size maximum The maximum number of wolves in pack above which there were not 

enough resources.  

 Single breeder Wolf that was part of a breeding pair and remained on the breeding pack 

territory after death of its mate. 

 Targeted lethal 

control 

Mortality event in Wisconsin that focused on killing wolves in depredation 

buffer areas.  

 Unrelated wolves Wolves that were not parent-offspring, full siblings, or half-siblings. 

 Winter population 

count 

Count of wolves in January of each year, after aging and before mate-

finding. 

 Wisconsin winter 

population count 

Count of the wolves in Wisconsin, but outside of the reservation, in January 

of each year. 
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Table 2. Overview of processes, parameters, and default values parameters in an individual-

based spatially explicit model for wolves in the southern Lake Superior region, USA.  

Parameter Value or distribution 

Number of initial breeding pairs 20 

Number of 1 km x 1 km pixels 349,020 

Number of km in east – west direction 630 

Number of km in north – south direction 554 

Number of potential territories 363 

Number of potential territories in Wisconsin 151 

Mate-finding  

     Search distance (number of territories away)  2 

Dispersal for mate-finding  

     Probability of dispersing in degree direction 1, 2, …, 360 1/360 

     Distribution for distance lognormal 

     Mean distance (km) 50 

     Standard deviation of distance (km) 3 

     Probability immigrant sex is male 0.5 

     Probability immigrant age is 1, 2, …, 12 1/12 

Reproduction  

     Distribution for litter size normal 

     Mean litter size (number of pups) 5.4 

     Standard deviation of litter size  0.8 

     Probability that pup sex is male 0.5 

Targeted lethal control  

     Proportion of Wisconsin’s winter population that is killed 0.1 

     Number of chronic depredation farms 111 

     Number of livestock depredation sites 236 

     Depredation buffer distance from sites (km) 5 

Dispersal due to resource limitation  

     Probability of dispersing in degree direction 1, 2, …, 360 1/360 

     Mean distance (km) 50 

     Standard deviation of distance (km) 3 

     Pack size maximum 12 

Spatial mortality risk mortality  

     Average probability of death from spatial mortality risk 0.35 

     Average probability of death in WI from spatial mortality risk 0.37 

     Average prob. of death in WHZ 1 from spatial mortality risk 0.29 

     Average prob. of death in WHZ 2 from spatial mortality risk 0.29 

     Average prob. of death in WHZ 3 from spatial mortality risk 0.32 

     Average prob. of death in WHZ 4 from spatial mortality risk 0.33 

     Average prob. of death in WHZ 5 from spatial mortality risk 0.33 

     Average prob. of death in WHZ 6 from spatial mortality risk 0.40 

Age  

     Maximum age of wolves 12 
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Table 3. Wolf harvest rates in wolf harvest zones (WHZ) of Wisconsin, Michigan (MI), and 

Minnesota (MN), USA with percent of harvest occurring in the fall before mating season for 6 

wolf harvest scenarios. 
Brief 

description 

Motivation WHZ 

1 

WHZ 

2 

WHZ 

3 

WHZ 

4 

WHZ 

5 

WHZ 

6 

MI MN Fall 

percent 

No harvest Baseline understanding of 

simulated wolf population 

without harvest 

0 0 0 0 0 0 0 0 NA 

2012 

harvest 

Harvest Wisconsin wolves 

by WHZ as was observed 

during 2012 harvest 

9.0 9.4 19.4 18.5 14.7 47.5 7.0 14.0 100 

2012 long 

harvest 

Harvest Wisconsin wolves 

by WHZ as was observed 

during 2012 harvest, 

except extend 25% of the 

harvest into the winter 

after mating season 

9.0 9.4 19.4 18.5 14.7 47.5 7.0 14.0 75 

2013 

harvest 

Harvest Wisconsin wolves 

by WHZ as was proposed 

for 2013 harvest 

21.4 16.6 66.4 48.0 23.6 90.9 7.0 14.0 100 

30% 

harvest 

Harvest all wolves with a 

30% harvest rate which is 

the overall rate of wolf 

harvest proposed for the 

2013 Wisconsin wolf 

harvest 

30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 100 

Stable 

population 

harvest 

Harvest Wisconsin wolves 

by WHZ at a low enough 

rate to maintain a stable to 

increasing wolf population 

in the ceded territories of 

Wisconsin 

5.0 5.0 10.0 10.0 20.0 75.0 7.0 14.0 100 
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Table 4. Averages (and standard deviations) for percent of pups in winter, number of breeders 

and non-breeders in winter, breeding pair tenure, percent of breeding pairs that breed for at least 

1 year, pack size, and dispersal and immigration rates for 100 simulated Wisconsin wolf 

populations harvested for 1, 5 and 20 years (Yr) under 6 different scenarios.  
  Harvest scenario 

Measure Yr No harvest 2012 harvest 2012 long 

harvest 

2013 harvest 30% harvest Stable pop 

harvest 

Percent 

pups in 

winter 

1 38.7 (2.2) 38.6 (2.5) 38.7 (2.3) 38.6 (3.0) 38.8 (2.8) 38.7 (2.3) 

5 38.0 (2.4) 39.5 (2.7) 39.7 (2.7) 40.8 (3.9) 41.2 (3.5) 38.8 (2.5) 

20 36.9 (1.8) 39.3 (2.6) 39.2 (3.2) 40.7 (4.0) 38.5 (8.4) 38.7 (2.4) 

Breeders in 

winter 

1 139 (9) 127 (9) 130 (9) 109 (9) 111 (9) 131 (9) 

5 155 (10) 130 (12) 127 (10) 100 (11) 100 (10) 134 (9) 

20 168 (10) 134 (11) 124 (11) 88 (10) 44 (10) 144 (10) 

Non-

breeders in 

winter 

1 845 (30) 770 (27) 787 (30) 662 (29) 682 (28) 787 (31) 

5 961 (38) 781 (35) 769 (38) 602 (41) 597 (33) 816 (35) 

20 1077 (30) 806 (36) 753 (46) 526 (42) 279 (50) 864 (42) 

Breeding 

pair tenure 

≥1 yr (%) 

1 42.4 (4.8) 36.4 (5.3) 39.0 (4.7) 30.9 (4.6) 30.3 (4.6) 39.6 (4.5) 

5 42.4 (4.8) 38.0 (4.9) 38.0 (4.7) 33.6 (4.9) 33.3 (5.3) 39.4 (4.8) 

20 42.2 (4.5) 38.2 (5.2) 37.3 (5.2) 34.5 (5.3) 36.5 (7.8) 39.7 (4.1) 

Breeding 

pair tenure 

(years) 

1 1.77 (0.11) 1.67 (0.12) 1.71 (0.12) 1.57 (0.11) 1.55 (0.11) 1.73 (0.11) 

5 1.79 (0.12) 1.66 (0.11) 1.64 (0.10) 1.56 (0.10) 1.53 (0.10) 1.71 (0.11) 

20 1.76 (0.10) 1.65 (0.11) 1.63 (0.12) 1.56 (0.11) 1.60 (0.16) 1.70 (0.10) 

Average 

pack size 

1 7.82 (0.20) 7.21 (0.20) 7.39 (0.23) 6.40 (0.18) 6.42 (0.20) 7.44 (0.19) 

5 7.94 (0.23) 7.14 (0.23) 7.17 (0.24) 6.38 (0.24) 6.23 (0.20) 7.39 (0.22) 

20 8.05 (0.19) 7.20 (0.23) 7.15 (0.22) 6.58 (0.28) 5.87 (0.39) 7.42 (0.21) 

Winter 

dispersal 

rate 

1 0.059 (0.007) 0.057 (0.007) 0.058 (0.007) 0.054 (0.006) 0.058 (0.008) 0.055 (0.007) 

5 0.064 (0.007) 0.050 (0.007) 0.048 (0.006) 0.044 (0.006) 0.037 (0.006) 0.051 (0.006) 

20 0.067 (0.007) 0.051 (0.005) 0.048 (0.005) 0.043 (0.006) 0.034 (0.008) 0.051 (0.005) 

Fall 

dispersal 

rate 

1 0.161 (0.007) 0.145 (0.008) 0.142 (0.009) 0.132 (0.009) 0.135 (0.010) 0.147 (0.009) 

5 0.170 (0.007) 0.139 (0.007) 0.133 (0.008) 0.127 (0.009) 0.096 (0.006) 0.143 (0.007) 

20 0.181 (0.006) 0.146 (0.006) 0.140 (0.006) 0.134 (0.007) 0.081 (0.009) 0.150 (0.006) 

Immigra-

tion rate 

1 0.018 (0.004) 0.018 (0.003) 0.018 (0.003) 0.018 (0.004) 0.017 (0.004) 0.018 (0.003) 

5 0.019 (0.003) 0.016 (0.003) 0.015 (0.003) 0.014 (0.003) 0.011 (0.003) 0.016 (0.003) 

20 0.021 (0.003) 0.016 (0.003) 0.016 (0.003) 0.015 (0.003) 0.010 (0.004) 0.016 (0.002) 

Spatial 

mortality 

risk rate 

1 0.273 (0.012) 0.270 (0.014) 0.270 (0.012) 0.264 (0.015) 0.269 (0.014) 0.266 (0.012) 

5 0.276 (0.011) 0.267 (0.012) 0.268 (0.014) 0.266 (0.013) 0.267 (0.017) 0.267 (0.012) 

20 0.279 (0.011) 0.270 (0.012) 0.267 (0.012) 0.263 (0.015) 0.260 (0.020) 0.268 (0.012) 

Fall harvest 

rate 

1 0 (0) 0.087 (0.003) 0.067 (0.003) 0.174 (0.007) 0.174 (0.005) 0.063 (0.005) 

5 0 (0) 0.084 (0.003) 0.064 (0.003) 0.161 (0.008) 0.176 (0.006) 0.062 (0.004) 

20 0 (0) 0.084 (0.003) 0.062 (0.003) 0.146 (0.008) 0.165 (0.010) 0.062 (0.004) 

Winter 

harvest rate 

1 0 (0) 0 (0) 0.035 (0.002) 0 (0) 0 (0) 0 (0) 

5 0 (0) 0 (0) 0.032 (0.002) 0 (0) 0 (0) 0 (0) 

20 0 (0) 0 (0) 0.031 (0.002) 0 (0) 0 (0) 0 (0) 
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Figure 1. Annual events of simulated wolves in an individual-based spatially-explicit model for 

wolves in the southern Lake Superior region, USA. 
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Figure 2. Landscape variables in an individual-based spatially-explicit simulation for wolves in 

the southern Lake Superior region, USA, including: A) state and water boundaries, B) Ojibwe 

Indian reservation boundaries and the ceded territories in Wisconsin, C) wolf harvest zones in 

Wisconsin, D) locations of farms with chronic depredation problems and farms with a 

depredation in 2010 or 2011 surrounded by a 5 km buffer (light gray; depredation buffer) and a 

10 km buffer (black), E) centers of pack territories that denote 15 km x 15 km square sections of 

habitat, and F) a spatial mortality risk map.   
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Figure 3. A) The mean and standard deviation from 100 simulations of the Wisconsin (WI) and 

southern Lake Superior (SLS) wolf population sizes for 100 years of an individual-based 

spatially-explicit simulation, and B) the mean and standard deviation of the per capita growth 

rate for the simulated Wisconsin wolf population.   
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Figure 4. Model calibration showing the mean and 1 standard deviation from 100 simulations of 

an individual-based spatially-explicit model of A) wolf population growth in Wisconsin (WI) 

and the southern Lake Superior region (SLS) plotted with the estimated population sizes from 

1980 – 2012, and B) number of pups in Wisconsin plotted with estimated number of pups in 

Wisconsin from 1980 – 2010. 
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Figure 5. The average and 1 standard deviation of estimated wolf population sizes in Wisconsin, 

USA, under 6 harvest scenarios for 50 years of harvest using an individual-based spatially-

explicit model of wolves in the southern Lake Superior region, USA. 

  



157 

 

 

Figure 6. The number of simulated wolves in the depredation buffer in Wisconsin from an 

individual-based spatially-explicit model for southern Lake Superior wolves, USA, from 6 

harvest scenarios throughout the simulated year after A) 1 year and B) 20 years of harvest.  The 

gray shaded area shows when the majority of the depredation events occur in Wisconsin (Olson 

2013). 
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Appendix A. Details on spatial mortality risk surface model and use. 

 The following details the construction and interpretation of the spatial mortality risk 

surface used in the individual-based spatially-explicit wolf harvest model.  In this model, we 

used the alive (0) or dead (1) status of 195 radio-collared wolves from 15,329 radio-telemetry 

relocations in Wisconsin, USA from 1979 – 2012 as the response variable in a logistic 

regression.  Radio-collared wolves had a mean of 78 locations (N = 195, range 2 – 422).  We 

performed a logistic regression with a conditional likelihood by stratifying on individual wolf.  

Individuals were treated as nuisance parameters in the model.  By using a conditional logistic 

regression, we took into account that the radio-telemetry locations for an individual wolf are 

inherently similar, and wolves contributed to the likelihood only if they had some change in the 

covariates between their alive locations and death location (Breslow and Day 1980).  Therefore, 

the stratification by individual wolf led to some loss of information, but the gain was a robust 

model with unbiased estimates for the parameters of interest (Gail et al. 1981, McCullagh 1984).   

The likelihood from the conditional logistic regression model was equivalent to the 

partial likelihood from the Cox model when each wolf was assigned to its own stratum and time 

was constant (Cox 1972, Gail et al. 1981).  We had 195 strata from 195 individual wolves that 

we indexed by   and           and   was the number of strata.  We took time to be 

constant which meant that time did not enter into the model and we assumed that all locations for 

a wolf occurred simultaneously.  Each stratum   was its own risk set composed of   alive 

locations and 1 death location.  For each stratum, we estimated a partial likelihood       where 

  were the parameters of interest and   were the coefficients, with row      of coefficients for 

the death location:                   ∑          
   
   ⁄ .  The numerator of the partial 
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likelihood used only the information from the single death location and the denominator of the 

likelihood used information about all locations for the wolf in stratum   (Klein and 

Moeschberger 2003).  After computing       separately for each stratum  , the log partial 

likelihood       was the sum of the log partial likelihoods by stratum:       ∑        
   , 

where                   .  By stratifying, we assumed that the covariates   did not change 

for individual wolves (Klein and Moeschberger 2003).  Instead, the differences among wolves 

were absorbed in the baseline hazards which canceled out of the partial likelihoods.  The log 

partial likelihood       was then maximized with respect to   which can be done numerically 

by taking partial derivatives of       and solving a set of nonlinear equations using a Newton-

Raphson procedure (Gail et al. 1981, Klein and Moeschberger 2003). 

The covariates of interest   were road density and percent of agriculture.  Using ArcMap, 

we aggregated statewide road layers from Wisconsin (United States Department of Commerce 

2010), Minnesota (United States Department of Commerce 2010) and Michigan (Center for 

Shared Solutions and Technology Partnerships 2013) and used road designations that 

corresponded to primary roads, secondary roads, city streets, local roads, rural roads, ramps, and 

service drives (TIGER/Line 2010 Classes of S1100, S1200, S1400, S1630, and S1640).  Second, 

we used the National Land Cover Database 2006 (Fry 2011) and aggregated the categories of 

pasture and crops to represent agriculture.  In each buffered location, we measured road density 

and percentage of agriculture using Hawth’s Tools (Beyer 2004) in ArcMap.  We standardized 

both covariates to have mean 0 and standard deviation (SD) 1 so that they were on the same scale 

for interpretation.   
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We used the function ‘clogit’ in the survival library of program R to fit the model.  The 

results were the same when we used the function ‘coxph’ in the survival library, thereby 

confirming the equivalence of the conditional logistic regression and Cox proportional hazards 

likelihoods under certain conditions (Gail et al. 1981).  We used the Wald chi-squared test to test 

the null hypothesis of the estimated parameters different than 0:                 and 

            (Table A.1).  Both tests were highly significant, leading to rejection of both null 

hypotheses and we concluded that both parameter estimates were different than 0.  Next, we 

converted the estimated parameters into relative risks,   , for easier interpretation:        

        and            (Table A.1).   

The road and agriculture effects were similar to each other and both positive.  A wolf in a 

location with road density 1 SD higher than average road density had a probability of a death 

location 1.432 times greater than a wolf in a location with average road density, assuming 

average percent agriculture.  Similarly, a wolf in a location with percent agriculture 1 SD greater 

than a wolf in a location with average percent agriculture had a probability of a death location 

1.362 times greater than a wolf in a location with average percent agriculture, assuming average 

road density (Table A.1).  To interpret another way, for every 0.5 km roads / km
2
 (1 SD) increase 

in road density, a wolf was 1.432 times more likely to have its location be a death location.  For 

every 10% increase in percent agriculture (1 SD), a wolf was 1.362 times more likely for that 

location to be a death location.     

 Next, we extrapolated this fitted model to every 1 km
2
 pixel of a 630 km x 554 km 

landscape centered on Wisconsin.  We made a landscape layer of road density and percent 

agriculture and standardized them based on the original model.  Road density in km road / km
2
 in 
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each 1 km
2
 pixel was subtracted from the mean (0.552 km / km

2
) and divided by the SD (0.603 

km / km
2
) road density calculated from the radio-telemetry locations (Fig. A.1).  Percent 

agriculture in each 1 km
2
 pixel was subtracted from the mean (3.620%) and divided by the SD 

(9.931%) percent agriculture calculated from the radio-telemetry locations (Fig. A.2).  We used 

the standardized road density and standardized percent agriculture values at each 1 km
2
 pixel as 

predictors, and calculated the linear predictor for each pixel,                     (Fig. 

A.3).   

The linear predictor was the log hazard.  We scaled the log hazard to represent a spatial 

mortality risk surface to range from 0.229 to 0.452 (Fig. A.4).  The low and high spatial 

mortality risks of 0.229 and 0.452 represented the average annual mortality for the simulated 

wolves that live in the best wolf range and poorer quality wolf range as defined from the highest 

wolf pack habitat suitability class in Mladenoff et al. (2009) .  We took the best wolf range to 

represent the highest probability class of 0.96 – 1, and we estimated wolf survival in this habitat 

as 0.771 (SD = 0.015, see Chapter 2).  We took poorer quality wolf range to represent the much 

lower probability class of 0.11 – 0.25, and we estimated wolf survival as 0.548 (SD = 0.055, see 

Chapter 2).  We did not scale our spatial mortality risk surface to the very lowest probability 

class of Mladenoff et al. (2009) because very little of this lowest class was in wolf range (WHZs 

1 – 5) and the radio-collared wolves from this analysis were primarily in wolf range.  The high 

spatial mortality risk of 0.452 was double the low spatial mortality risk and was an estimate of 

the annual mortality rate for wolves in Wisconsin that are mostly outside of wolf range.  Most 

the radio-collared wolves in Wisconsin have been radio-collared and tracked in primary wolf 

range, so we do not have a very good idea of survival rates outside of wolf range.  We assumed 
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that the riskiest parts of the landscape in areas with high road density and high percent 

agriculture had double the spatial mortality risk compared to primary wolf range (Fig. A.4).   
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Table A.1. Parameter values and relative risk (with 95% confidence interval) for a conditional 

logistic regression model describing the conditional probability that a location was a death 

location for wolves in Wisconsin, USA (1979 – 2012).  The Wald chi-square test and p-value test 

the null hypothesis that the parameter value equals 0.   

Parameter Mean 

estimate 

Wald chi-

square test 

p-value Mean relative 

risk 

95% CI 

Roads
1
 0.359 5.49 < 0.0001 1.432 1.260 – 1.628 

Agriculture
1
 0.309 4.91 < 0.0001 1.362 1.204 – 1.541 

1
 Roads stands for road density in km

2
/km and agriculture stands for percent agriculture.  
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Figure A.1.  Paved road density in km road / km
2
 mapped in 1 km

2
 pixels for Wisconsin, the 

upper peninsula of Michigan, and a portion of Minnesota, USA (2010).   
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Figure A.2.  The percent of agriculture mapped in 1 km
2
 pixels across Wisconsin, the upper 

peninsula of Michigan, and Minnesota, USA (2006). 
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Figure A.3. A map of the linear predictor (log hazard) from a fitted conditional logistic 

regression model of the alive or dead status of wolf radio-telemetry locations based on the 

variables of road density and percent of agriculture in 1 km
2
 pixels mapped across Wisconsin, 

the upper peninsula of Michigan, and Minnesota, USA. 
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Figure A.4.  A map of spatial mortality risk that has been scaled to estimated mortality rates for 

wolves living in the best quality and poorer quality habitat (defined in Mladenoff et al. 2009) and 

mapped in 1 km
2
 pixels across Wisconsin, the upper peninsula of Michigan, and Minnesota, 

USA.   
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Appendix B: Design concepts from individual-based spatially-explicit model for wolves in the 

southern Lake Superior region, USA. 

Design concepts 

Sensing 

The probability of breeding between any discrete pair of wolves was dependent on life 

history stage and relationships, including: age, sex, pack status, pack size, breeding status, 

immigrant status, disperser status, parents, and sibling relationships.  After a breeder died, 

wolves that were within two territories could sense a single breeder occupying a pack territory 

and could occupy the open breeding position.  Wolves evaluated status as siblings and 

offspring/parents and avoided inbreeding when choosing a mate.   

Emergence 

We observed the emergent properties primarily through simulated population dynamics, 

because the individuals’ responsiveness to social position and spatial context imposed 

limitations.  Colonization and subsequent distribution patterns of simulated wolves emerged 

from the process of wolves searching for mates and joining/forming packs within a defined 

search distance of two territories away.  Consequently, sparse distribution of wolves during the 

first years of a simulation resulted in reduced population growth consistent with a suspected 

Allee effect (Stenglein et al., unpublished).  The pattern of reduced population growth at high 

density after many years was also an emergent property because of a fixed number of territories 

and pack size limits.  As territories become saturated density-driven leveling off of the 

population growth rate occurred.  The number of territories and a pack size maximum within 

territories defined the resource limitation in our simulation.  Otherwise, we did not explicitly 
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model the distribution of food resources because we did not believe SLS wolves to be food 

limited (Van Deelen 2009).  Wolves’ primary food source in the SLS region is deer and deer 

densities were roughly 5 to 13 deer/km
2
 across the SLS region– a level roughly 3 times higher 

than the level at which wolf populations become food-limited (Fuller et al. 2003, Van Deelen 

2009).      

 Reduced or improved fitness resulting from pack status was an emergent property of the 

model as well.  Nonbreeding individuals that were not members of packs or were members of 

large packs (> 12 wolves) dispersed ≤ 2 times a year and this increased their exposure to riskier 

parts of the landscape.  Individuals dispersed in random directions and for distances drawn from 

an empirically derived distribution (Treves et al. 2009), so they tended to move through or arrive 

in areas where spatial mortality risk was up to 2 times higher than in core habitat areas 

(Appendix A).  However, dispersing individuals potentially increased their reproductive potential 

by leaving their natal packs and moving to nearby vacant territories.  Wolves increased their 

fitness when they found a mate and a pack territory to establish a new pack because breeding 

range was defined as areas with the lowest spatial mortality risk.  Also, breeders had increased 

survival because they did not disperse from the pack.   

 Pack structure and age structure were also emergent properties of the simulation.  Packs 

emerged as an unrelated adult male and adult female paired and occupied territories.  Each year 

the pack bred and the offspring mainly stayed in the pack as long as pack sizes remained < 12 

wolves.  Occasionally, a non-breeding member would enter the pack through dispersal.  

Therefore, a typical pack structure of an unrelated breeding pair with multiple generations of 

offspring and an occasional unrelated wolf in a defined territory emerged from the simulation 
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(Mech and Boitani 2003).  Age structure emerged and stabilized as the simulated population 

increased their distribution across the landscape.  Age structure was a result of the annual aging 

event interacting with variable survival as well as the birth pulse of pups each simulated year.      

Interaction 

We modeled interactions between wolves and the landscape and between individual 

wolves explicitly.  First, wolves experienced variable mortality risks from four sources of 

mortality as they moved around the landscape: 1) Wolves’ spatial mortality risk changed as a 

result of different road density and agricultural density (Appendix A), 2) Wolves’ probability of 

being killed through targeted lethal control was linked to depredation buffer areas, 3) Wolves’ 

probability of being harvested was determined by the harvest quota and wolf density in 

whichever wolf harvest zone they were in, and 4) Wolves’ probability of dying because of 

resource limitation (too many wolves in a pack) was linked to the number of wolves in their 

current pack and the density of wolves in pack-areas serving as potential dispersal sinks.  

Second, wolves interacted with other wolves by searching for receptive, unrelated mates and for 

vacant pack territories.  New breeding packs were only formed if there was a potential breeding 

pair and a vacant pack territory, thereby interacting with each other and the landscape during 

mate-finding.  Third, wolves in packs interacted with each other.  For example, presence of 

breeding wolves suppressed breeding by other pack members – making them subordinates.  

Related wolves stayed with their parents and litter mates in their natal pack, but avoided 

inbreeding when searching for a mate.  Resource limitation occurred as a threshold pack size that 

triggered increased dispersal.     

Stochasticity 
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Stochasticity was implemented at the level of probability distributions for outcomes 

associated with individual life-history events; hence in the early years where there were fewer 

individuals, stochasticity had a larger impact on population trend.  Initialization of each 

simulation began with 20 breeding pairs located in Minnesota’s pack areas.  Their offspring 

began the colonization of the SLS region.  If these packs were initiated in areas with higher 

relative mortality risk, they might have died out before producing many pups to colonize the SLS 

region.  Also, dispersers from the original wolf packs chose a random direction and drew a 

distance from a probability distribution.  Because mate-finding distance was restricted, there was 

a chance that lone wolves would not find mates in the sparsely populated parts of SLS region 

before they died.     

Other elements of stochasticity were variable litter sizes and numbers of immigrants.  The 

number of wolves in a litter was drawn from a probability distribution and sex was randomly 

assigned.  With few packs, an unequal sex ratio of small litter sizes could have prevented the 

population from increasing.  Another stochastic process was the number and location of the 

arrival of immigrants.  The number of immigrants was determined by the number of dispersers 

that emigrated from the study area.  New immigrants increased potential breeding opportunities, 

especially in a small inter-related population.    

Collectives 

Individual wolves grouped into packs based on presence inside a territory and presence 

within a territory of ≥ 1 breeder.  Packs either had a breeding pair (most often) or a single 

breeder that lost its mate and was waiting for a wolf to fill that breeding position.  All other 

wolves in the pack were subordinate, and most were related to each other and the breeders.  A 
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second collective designation was based on landscape and administrative boundaries (e.g., state 

boundaries, WHZ boundaries, ceded territory boundaries). These boundaries were simply used to 

subset the population during annual counts.   

Observation 

Counts of wolves by area occurred during different times in the simulated calendar year 

and totals were reported at the end of the year.  Generally, counts occurred before and after each 

dispersal or mortality event, and were enumerated for the SLS region, each of the states, the 

ceded territory, the Ojibwe Indian reservations, and each WHZ.  The winter population count 

was made at the end of the calendar year after all wolves aged 1 year and before mate-finding.  

Timing of the winter population count in the simulation mirrored the timing of winter population 

counts of wolves made by Wisconsin and Michigan each year (Beyer et al. 2009, Wydeven et al. 

2009b).   

We also quantified numbers of individuals and rates for immigration, dispersal, and pup 

production events. We counted the number of wolves (by age class) that died as a result of each 

mortality event, the number of packs disrupted as a result of harvest (loss of at least one breeding 

wolf), and the number of wolves that were in the depredation buffer after dispersal and mortality 

events, and the average number of wolves in Wisconsin packs.  Most of these counts were made 

at the end of the calendar year.  We quantified breeding pair tenure of Wisconsin packs by 

counting how many years the breeding pair produced pups, and proportion of Wisconsin 

breeding pairs that bred for > 1 year. 


